AM8EB057A Data Sheet

佑華微電子股份有限公司
新竹市光復路二段295號9樓之1號
電話：03－573 6660
傳真：03－573 6661
www．ealpha．com．tw

Alpha Microelectronics Corp．

9F－1，295，Sec．2，Kuang Fu Rd．，Hsinchu，Taiwan
Tel ：＋886－3－573 6660
Fax：＋886－3－573 6661
www．ealpha．com．tw

Revision History

Rev	Date	Description	Page
1.0	$2006 / 1 / 18$	Original.	-

Table of Content

1. General Description 4
1.1 Features 4
1.2 Block Diagram 5
1.3 Pin Assignment 6
1.4 Pin Description 6
2. Memory Organization 8
2.1 Program Memory Organization 8
2.2 Data Memory Map 9
3. Functional Descriptions 10
3.1 General Function Registers 10
3.2 I/O Control Registers (Addressed by IOST, IOSTR instruction) 15
3.3 Special Function Registers (Addressed by SFUN, SFUNR instruction) 19
3.4 RESET 27
3.5 I/O Ports 29
3.6 Real Time Clock (TIMER0) And Watchdog Timer 31
3.7 Oscillator Configuration 33
3.8 Interrupts 35
3.9 Power-Down Mode (Sleep) 37
3.10 Configuration Word 38
4. Instruction Set 39
5. Electrical Characteristics 50
5.1 Absolute Maximum Rating 50
5.2 DC Characteristics ($\mathrm{Top}=25^{\circ} \mathrm{C}$) 50
6. Package Dimension 53
6.1 28 Pin Skinny DIP 300 mil 53
6.2 28 Pin DIP 600 mil 54
6.3 28 Pin SOP 300 mil. 55
6.4 28 Pin SSOP 209 mil 56
7. Ordering Information 57

1. General Description

The AM8EB057A is a family of low-cost, high speed, high noise immunity and EPROM-embedded 8-bit CMOS micro-controllers. It employs a RISC architecture with only 55 instructions. All instructions are single cycle except for program branches that take two cycles. The AM8EB057A provide powerful and easy useful instruction set that can directly or indirectly address its register files and data memory.

1.1 Features

- Wide operating voltage range: $2.0 \sim 5.5 \mathrm{~V}$ at $32 \mathrm{kHz}, 2.2 \sim 5.5 \mathrm{~V}$ at $\mathrm{DC}-4 \mathrm{MHz}, 2.6 \sim 5.5 \mathrm{~V}$ at $\mathrm{DC}-20 \mathrm{MHz}$.
- Wide operating frequency range: $32 \mathrm{kHz} \sim 20 \mathrm{MHz}$.
- Wide operating temperature range: $-40^{\circ} \mathrm{C} \sim 85^{\circ} \mathrm{C}$.
- ROM: $2 \mathrm{~K} \times 14$ bits.
- RAM: 144×8 bits.
- Selectable oscillator options:
- IRC: Internal Resistor and Capacitor Oscillator
- EXT-R: External Resistor and internal Capacitor Oscillator
- ERC: External Resistor and Capacitor Oscillator
- LF-XTAL: Low Frequency Crystal Oscillator
- XTAL: Crystal/Resonator Oscillator
- HF-XTAL: High Frequency Crystal/Resonator Oscillator
- 6-level deep hardware stack.
- Total 55 single word instructions.
- All instructions are single cycle except for program branches which are two-cycle.
- Direct, indirect addressing modes for data accessing.
- All ROM area LGOTO instruction, all ROM area subroutine LCALL instruction.
- 8-bit real time clock/counter (Timer0) with 8-bit programmable prescaler.
- Two 8-bit re-load or non-stop down-count counter/timer Timer1, Timer2.
- On chip Watchdog Timer (WDT) with internal oscillator for reliable operation and software Watchdog enable/disable control.
- Internal Power-on Reset (POR).
- Built-in Low Voltage Reset (LVR).
- Power-up Reset Timer (PWRT) and Oscillator Start-up Timer (OST).
- SLEEP mode function to reduce power consumption.
- Four I/O ports PA, PB , PC and PD with independent direction control.
- Software I/O pull-high/pull-down or open-drain control.
- Two 8-bit PWM D/A converters.
- Two Buzzer output.
- One IR carrier output (38k / 57 k Hz) with selectable constant-current output.
- Six Interrupt source:
- Timer0 overflow.
- Timer1 underflow.
- Timer2 underflow.
- PB input change.
- External Interrupt Pin.
- Watchdog time out Interrupt (If the function is enabled by programming the configuration word.)
- Wake-up from SLEEP by external INT pin or Port B input change.
- Programmable Code Protection.

1.2 Block Diagram

1.3 Pin Assignment

28-pin PDIP, SOP, SSOP

PA4/RTCC0 \square	1	28		PA5/Reset
vDD \square	2	27		PA6/Xin/Rin
PDO/RTCC1 \square	3	26		PA7/Xout
vss \square	4	25		PC7
PD1/INT \square	5	24		PC6
PAO \square	6	23		PC5
PA1 \square	7	22		PC4
PA2 \square	8	21		PC3
PA3 \square	9	20		PC2
PBO \square	10	19		PC1/BZ2
PB1/RR \square	11	18		PC0/PWM2
PB2 \square	12	17		PB7/BZ1
PB3 \square	13	16		PB6/PWM1
PB4 \square	14	15		PB5

1.4 Pin Description

Name	ATTR.	Function
PA0~PA3	I/O	PA0~PA3 are bi-directional I/O port.
PA4/RTCC0	I/O	Bi-directional PA4. Input pin of real time counter Timer0, Timer1/clock.
PA5/Reset	I/O	Bi-directional PA5. Input pin for device reset. If this pin is low, the device is reset
PA6/Xin/Rin	I/O	X'TAL type: Input terminal of crystal oscillator. EXT-R type: External resistor for EXT-R oscillator; ERC type: Input pin of external RC oscillator. IRC type: Bi-directional PA6.
PA7/Xout	I/O	X'TAL type: Output terminal of crystal oscillator. EXT-R or ERC type: This pin can output instruction clock. IRC type: Bi-directional PA7, or this pin can output instruction clock.
PB0	I/O	Bi-directional PB0.
PB1/IR	I/O	Bi-directional PB1. IR carrier output.
PB2~PB5	I/O	PB2~PB5 are bi-directional I/O port.

Name	ATTR.	Function
PB6/PWM1	I/O	Bi-directional PB6. PWM1 output.
PB7/BZ1	I/O	Bi-directional PB7. Buzzer1 output.
PC0/PWM2	I/O	Bi-directional PC0. PWM2 output.
PC1/BZ2	I/O	Bi-directional PC1. Buzzer2 output.
PC2~PC7	I/O	PC2~PC7 are bi-directional I/O port.
PD0/RTCC1	I/O	Bi-directional PD0. Input pin of real time counter Timer2.
PD1/INT	I/O	Bi-directional PD1. External interrupt input.
VDD	-	Power supply.
VSS	-	Ground.

2. Memory Organization

AM8EB057A memory is organized into program memory and data memory.

2.1 Program Memory Organization

The AM8EB057A has a 11-bit Program Counter (PC) capable of addressing a $2 \mathrm{~K} \times 14$ bit program memory space. The RESET vector of the AM8EB057A is at 000h; The INT instruction software interrupt vector is at 001h; The Global hardware interrupt vector is at 008h. AM8EB057A supports all ROM area LCALL/LGOTO instructions without page.

FIGURE 2.1: Program Memory Map and STACK

2.2 Data Memory Map

Data memory includes General Function Registers and General Storage Registers. The Data Memory are accessed either directly or indirectly through the FSR register.

TABLE 2.1: Registers File Map for AM8EB057

Address	Description			
00h	Indirect Addressing Register			
01h	Timer0			
02h	PCL			
03h	STATUS			
04h	FSR			
05h	PortA			
06h	PortB			
07h	PortC			
08h	PortD			
09h	PortC PH			
OAh	PortC PD			
OBh	PortC OD			
0Ch	PortD Control			
0Fh	Interrupt Status Register			
10h~1Fh	16 Bytes SRAM			
20h~3Fh	32 Bytes SRAM (Bank 0)	32 Bytes SRAM (Bank 1)	32 Bytes SRAM (Bank 2)	32 Bytes SRAM (Bank 3)

3. Functional Descriptions

3.1 General Function Registers

- INAR (Indirect Address Register): R0

R0 is not a physically implemented register. It is used as an indirect addressing pointer. Any instruction accessing this register can access data pointed by $\operatorname{FSR}(R 4)$.

- Timer0 (8-bit real-time clock/timer): R1

This register increases by an external signal edge applied to RTCCO pin, or by internal instruction cycle. It can be read or written as any other register.

- PCL (Low Byte of Program Counter): R2

This register increases itself every instruction cycle, except the following condition shown in Figure below.

RET, RETIE,
RETIA

Stack 1
Stack 2
Stack 3
Stack 4
Stack 5
Stack6

For change content of PCL register instruction where the PCL register is the destination, the Bit5 and Bit6 of the Status register will provide data to A9 and A10 of the Program Counter, The A8 of the Program Counter is always cleared. The configuration is shown in following figure .

- STATUS (Status Register): R3

The content of R3 is listed in Table below.
TABLE 3.1: STATUS Register

Bit	Symbol	Description
0	C	$\begin{aligned} & \text { Carry/borrow bit } \\ & \begin{aligned} \text { ADD } & =1, \mathrm{~A} \text { carry occurred } \\ & =0 \text {, A carry did not occur } \\ \text { SUB } & =1, \mathrm{~A} \text { borrow did not occur } \\ & =0, \mathrm{~A} \text { borrow occur } \end{aligned} \end{aligned}$
1	DC	Half carry/half borrow bit ADD $=1$, A carry from the 4th low order bit of the result occurred $=0$, A carry from the 4th low order bit of the result did not occur SUB $=1, A$ borrow from the 4th low order bit of the result did not occur $=0$, A borrow from the 4th low order bit of the result occurred
2	Z	Zero bit $=1$, The result of a logic operation is zero $=0$, The result of a logic operation is not zero
3	PD	$\begin{aligned} \text { Power down flag bit } & =1, \text { After power-up or by the CLRWDT instruction } \\ & =0, \text { By the SLEEP instruction } \end{aligned}$
4	TO	$\begin{aligned} \hline \text { Time overflow flag bit } & =1, \text { After power-up or by the CLRWDT or SLEEP instruction } \\ & =0, \text { A WDT time-overflow occurred } \end{aligned}$
5	PAO	Program Page Pre-select Bit PA1, PA0 $=00$, Program Page $0(000 \mathrm{~h} \sim 1$ FFh $)$ PA1, PA0 = 01, Program Page 1 (200h ~3FFh)
6	PA1	PA1, PA0 $=10$, Program Page $2(400 \mathrm{~h} \sim 5 \mathrm{FFh})$ PA1, PA0 $=11$, Program Page 3 ($600 \mathrm{~h} \sim 7 \mathrm{FFh}$)
7	-	General purpose R/W bits

- FSR (File select register pointer): R4

Bit $0 \sim 5$ are used to select up to 64 registers (address: $00 \mathrm{~h} \sim 3 \mathrm{Fh}$) in the indirect addressing mode; Bit $6 \sim 7$ are used to select SRAM bank, shown in following Figure,

$\mathrm{B7}$	B 6

SRAM Bank select

00 h	INAR
01 h	Timer0
02 h	PCL
03 h	STATUS
04 h	FSR
05 h	PortA
06 h	PortB
07 h	PortC
08 h	PortD

B5	B4	B3	B2	B1	B0

Indirect Addressing Mode location select

- PORT A: R5

PA7:PA0, bi-directional I/O Register.

- PORT B: R6

PB7:PB0, bi-directional I/O Register.

- PORT C: R7

PC7:PC0, bi-directional I/O Register.

- PORT D: R8

PD1, PD0, bi-directional I/O Register.

- PortC Pull High Control Register: R9

The R9 register is both readable and writable.

* Bit 0 (/PHCO) : = 0, Enable the internal pull-high of PCO pin.
$=1$, Disable the internal pull-high of PCO pin.
* Bit 1 (/PHC1) : = 0, Enable the internal pull-high of PC1 pin.
$=1$, Disable the internal pull-high of PC1 pin.
* Bit 2 (/PHC2) : = 0, Enable the internal pull-high of PC2 pin.
$=1$, Disable the internal pull-high of PC2 pin.
* Bit 3 (/PHC3) : = 0, Enable the internal pull-high of PC3 pin.
$=1$, Disable the internal pull-high of PC3 pin.
* Bit 4 (/PHC4) : = 0, Enable the internal pull-high of PC4 pin.
= 1, Disable the internal pull-high of PC4 pin.
* Bit 5 (/PHC5) : = 0, Enable the internal pull-high of PC5 pin.
$=1$, Disable the internal pull-high of PC5 pin.
* Bit 6 (/PHC6) : = 0, Enable the internal pull-high of PC6 pin.
= 1, Disable the internal pull-high of PC6 pin.
* Bit 7 (/PHC7) : = 0, Enable the internal pull-high of PC7 pin.
$=1$, Disable the internal pull-high of PC7 pin

- PortC Pull Down Control Register: RA

The RA register is both readable and writable.

* Bit 0 (/PDCO) : = 0, Enable the internal pull-down of PCO pin.
$=1$, Disable the internal pull-down of PC0 pin.
* Bit 1 (/PDC1) : = 0, Enable the internal pull-down of PC1 pin.
$=1$, Disable the internal pull-down of PC1 pin.
* Bit 2 (/PDC2) : = 0, Enable the internal pull-down of PC2 pin.
$=1$, Disable the internal pull-down of PC2 pin.
* Bit 3 (/PDC3) : = 0, Enable the internal pull-down of PC3 pin.
$=1$, Disable the internal pull-down of PC3 pin.
* Bit 4 (/PDC4) : = 0, Enable the internal pull-down of PC4 pin.
$=1$, Disable the internal pull-down of PC4 pin.
* Bit 5 (/PDC5) : = 0, Enable the internal pull-down of PC5 pin.
$=1$, Disable the internal pull-down of PC5 pin.
* Bit 6 (/PDC6) : = 0, Enable the internal pull-down of PC6 pin.
= 1, Disable the internal pull-down of PC6 pin.
* Bit 7 (/PDC7) : = 0, Enable the internal pull-down of PC7 pin.
= 1, Disable the internal pull-down of PC7 pin

- PortC Open Drain Control Register: RB

The RB register is both readable and writable.

* Bit 0 (ODC0) : = 0, Disable the internal open-drain of PCO pin.
$=1$, Enable the internal open-drain of PC0 pin.
* Bit 1 (ODC1) : = 0, Disable the internal open-drain of PC1 pin.
$=1$, Enable the internal open-drain of PC1 pin.
* Bit 2 (ODC2) : = 0, Disable the internal open-drain of PC2 pin.
$=1$, Enable the internal open-drain of PC2 pin.
* Bit 3 (ODC3) : = 0, Disable the internal open-drain of PC3 pin.
$=1$, Enable the internal open-drain of PC3 pin.
* Bit 4 (ODC4) : = 0, Disable the internal open-drain of PC4 pin.
$=1$, Enable the internal open-drain of PC4 pin.
* Bit 5 (ODC5) : = 0, Disable the internal open-drain of PC5 pin.
$=1$, Enable the internal open-drain of PC5 pin.
* Bit 6 (ODC6) : = 0, Disable the internal open-drain of PC6 pin.
$=1$, Enable the internal open-drain of PC6 pin.
* Bit 7 (ODC7) : = 0, Disable the internal open-drain of PC7 pin.
= 1, Enable the internal open-drain of PC7 pin.

- PortD Control Register: RC

The RC register is both readable and writable.

* Bit 0 (IOPDO) : = 0 , The PDO pin is output mode.
$=1$, The PDO pin is input mode.
* Bit 1 (IOPD1) : = 0 , The PD1 pin is output mode.
$=1$, The PD1 pin is input mode .
* Bit 2 (/PHDO) : = 0, Enable the internal pull-high of PDO pin.
$=1$, Disable the internal pull-high of PDO pin.
*Bit 3 (/PHD1) : = 0, Enable the internal pull-high of PD1 pin.
$=1$, Disable the internal pull-high of PD1 pin.
* Bit 4 (/PDDO) : = 0, Enable the internal pull-down of PDO pin.
$=1$, Disable the internal pull-down of PDO pin.
* Bit 5 (/PDD1) : = 0, Enable the internal pull-down of PD1 pin.
= 1, Disable the internal pull-down of PD1 pin.
* Bit 6 (ODDO) : = 0, Disable the internal open-drain of PDO pin.
$=1$, Enable the internal open-drain of PD0 pin.
* Bit 7 (ODD1) : = 0, Disable the internal open-drain of PD1 pin.
$=1$, Enable the internal open-drain of PD1 pin.
- Interrupt Status Register: RF

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1IF	WDTIF	T2IF			EXIF	PBIF	ToIF

* Bit 0 (TOIF) : Timer0 overflow interrupt flag. Set " 1 " when the Timer0 overflow, reset by software.
* Bit 1 (PBIF) : PortB input change interrupt flag. Set " 1 " when PortB input change, reset by software.
* Bit 2 (EXIF) : External INT pin interrupt flag. Set "1" when External INT pin interrupt, reset by software.
* Bit 3 ~ 4 : Not used.
* Bit 5 (T2IF) : Timer2 underflow interrupt flag. Set "1" when the Timer1 underflow, reset by software.
* Bit 6 (WDTIF) : Watchdog timer out interrupt flag. Set "1" when watchdog time out interrupt, reset by software.
* Bit 7 (T1IF) : Timer1 underflow interrupt flag. Set " 1 " when the Timer1 underflow, reset by software.

[^0]
- TOMODE REGISTER

TOMODE is a readable / writable register and the content is listed in following Table.

Bit	Symbol	Description			
		Bit value	Timer rate	WDT reset rate	WDT INT rate
2-0	PS2:PS0	$\begin{array}{lll} \hline 0 & 0 & 0 \\ 0 & 0 & 1 \\ 0 & 1 & 0 \\ 0 & 1 & 1 \\ 1 & 0 & 0 \\ 1 & 0 & 1 \\ 1 & 1 & 0 \\ 1 & 1 & 1 \\ \hline \end{array}$	$1: 2$ $1: 4$ $1: 8$ $1: 16$ $1: 32$ $1: 64$ $1: 128$ $1: 256$	$\begin{aligned} & 1: 1 \\ & 1: 2 \\ & 1: 4 \\ & 1: 8 \\ & 1: 16 \\ & 1: 32 \\ & 1: 64 \\ & 1: 128 \\ & \hline \end{aligned}$	$1: 2$ $1: 4$ $1: 8$ $1: 16$ $1: 32$ $1: 64$ $1: 128$ $1: 256$
3	PSC	$\begin{aligned} & \text { Prescaler assign bit: } \\ & =0, \text { Timer0 } \\ & =1, W D T \end{aligned}$			
4	TE	Timer0 source signal edge select bit: $=0$, Increment when low-to-high transition on RTCCO pin for TIM0 $=1$, Increment when high-to-low transition on RTCCO pin for TIM0			
5	TS	Timer0 source signal select bit: $=0$, Internal instruction clock cycle $=1$, Transition on RTCCO pin			
6	INTF	Interrupt enable flag (Read Only) = 0, masked by DISI or hardware interrupt = 1, enabled by ENI / RETIE instructions			
7	INTEDG	Interrupt edge select bit $=0$, interrupt on falling edge of INT pin $=1$, interrupt on rising edge of INT pin			

* The first WDT Interrupt is $1 / 2$ period after executing Reset function or CLRWDT instruction when the Prescaler is assigned to Watch Dog Timer.

3.2 I/O Control Registers (Addressed by IOST, IOSTR instruction)

- Control PortA I/O Mode Register: F5 (PortA)

The F5 register is both readable and writable.
$=0$, the relative I/O pin is in output mode.
$=1$, the relative I/O pin is in input mode.

- Control PortB I/O Mode Register: F6 (PortB)

The F6 register is both readable and writable.
$=0$, the relative I/O pin is in output mode.
$=1$, the relative I / O pin is in input mode.

- Control PortC I/O Mode Register: F7 (PortC)

The F7 register is both readable and writable.
$=0$, the relative I/O pin is in output mode.
$=1$, the relative I/O pin is in input mode.

- PA4~PA7 Control Register: F8

The F8 register is both readable and writable.

* Bit 0 (/PHA4) : = 0, Enable the internal pull-high of PA4 pin.
$=1$, Disable the internal pull-high of PA4 pin.
* Bit 1 (/PHA6) : = 0, Enable the internal pull-high of PA6 pin.
$=1$, Disable the internal pull-high of PA6 pin.
* Bit 2 (/PHA7) : = 0, Enable the internal pull-high of PA7 pin.
$=1$, Disable the internal pull-high of PA7 pin.
* Bit 3 (/PDA5) : = 0, Enable the internal pull-down of PA5 pin.
$=1$, Disable the internal pull-down of PA5 pin.

- PortB Input Change Interrupt Control Register: F9

The F9 register is both readable and writable.

* Bit 0 (PBEIO) : = 0, Disable the input change interrupt function of PBO pin.
$=1$, Enable the input change interrupt function of PBO pin.
* Bit 1 (PBEI1) : = 0, Disable the input change interrupt function of PB1 pin.
$=1$, Enable the input change interrupt function of PB1 pin.
* Bit 2 (PBEI2) : = 0, Disable the input change interrupt function of PB2 pin.
$=1$, Enable the input change interrupt function of PB2 pin.
* Bit 3 (PBEI3) : = 0, Disable the input change interrupt function of PB3 pin.
$=1$, Enable the input change interrupt function of PB3 pin.
* Bit 4 (PBEI4) : = 0, Disable the input change interrupt function of PB4 pin.
$=1$, Enable the input change interrupt function of PB4 pin.
* Bit 5 (PBEI5) : = 0, Disable the input change interrupt function of PB5 pin.
$=1$, Enable the input change interrupt function of PB5 pin.
* Bit 6 (PBEI6) : = 0, Disable the input change interrupt function of PB6 pin.
$=1$, Enable the input change interrupt function of PB6 pin.
* Bit 7 (PBEI7) : = 0, Disable the input change interrupt function of PB7 pin.
$=1$, Enable the input change interrupt function of PB7 pin.

- Prescaler of Timer0 and WDT Counter Register: FA

The FA register is readable.
The content of FA is the value of Prescaler Counter.

- Pull Down Control Register: FB

The FB register is both readable and writable.

[^1]* Bit 1 (/PDA1) : = 0, Enable the internal pull-down of PA1 pin.
$=1$, Disable the internal pull-down of PA1 pin.
* Bit 2 (/PDA2) : = 0, Enable the internal pull-down of PA2 pin.
$=1$, Disable the internal pull-down of PA2 pin.
* Bit 3 (/PDA3) : = 0, Enable the internal pull-down of PA3 pin.
$=1$, Disable the internal pull-down of PA3 pin.
* Bit 4 (/PDB0) : = 0, Enable the internal pull-down of PB0 pin.
$=1$, Disable the internal pull-down of PB0 pin.
* Bit 5 (/PDB1) : = 0, Enable the internal pull-down of PB1 pin.
$=1$, Disable the internal pull-down of PB1 pin.
* Bit $6(/ P D B 2):=0$, Enable the internal pull-down of PB2 pin.
$=1$, Disable the internal pull-down of PB2 pin.
* Bit 7 (/PDB3) : = 0, Enable the internal pull-down of PB3 pin.
$=1$, Disable the internal pull-down of PB3 pin.

- PortB Open Drain Control Register: FC

The FC register is both readable and writable.

* Bit 0 (ODB0) : = 0, Disable the internal open-drain of PB0 pin.
$=1$, Enable the internal open-drain of PB0 pin.
* Bit 1 (ODB1) : = 0, Disable the internal open-drain of PB1 pin.
= 1, Enable the internal open-drain of PB1 pin.
* Bit $2($ ODB2) : = 0, Disable the internal open-drain of PB2 pin.
= 1, Enable the internal open-drain of PB2 pin.
*Bit 3 (ODB3) : = 0, Disable the internal open-drain of PB3 pin.
= 1, Enable the internal open-drain of PB3 pin.
* Bit 4 (ODB4) : = 0, Disable the internal open-drain of PB4 pin.
= 1, Enable the internal open-drain of PB4 pin.
* Bit 5 (ODB5) : = 0, Disable the internal open-drain of PB5 pin.
$=1$, Enable the internal open-drain of PB5 pin.
* Bit 6 (ODB6) : = 0, Disable the internal open-drain of PB6 pin.
= 1, Enable the internal open-drain of PB6 pin.
* Bit 7 (ODB7) : = 0, Disable the internal open-drain of PB7 pin.
= 1, Enable the internal open-drain of PB7 pin.

- PortB Pull High Control Register: FD

The FD register is both readable and writable.

* Bit 0 (/PHB0) : = 0, Enable the internal pull-high of PB0 pin.
$=1$, Disable the internal pull-high of PB0 pin.
* Bit 1 (/PHB1) : = 0, Enable the internal pull-high of PB1 pin.
$=1$, Disable the internal pull-high of PB1 pin.
*Bit 2 (/PHB2) : = 0, Enable the internal pull-high of PB2 pin.
$=1$, Disable the internal pull-high of PB2 pin.
* Bit 3 (/PHB3) : = 0, Enable the internal pull-high of PB3 pin.
$=1$, Disable the internal pull-high of PB3 pin.
*Bit 4 (/PHB4) : = 0, Enable the internal pull-high of PB4 pin.
$=1$, Disable the internal pull-high of PB4 pin.
*Bit 5 (/PHB5) : = 0, Enable the internal pull-high of PB5 pin.
$=1$, Disable the internal pull-high of PB5 pin.
* Bit 6 (/PHB6) : = 0, Enable the internal pull-high of PB6 pin.
$=1$, Disable the internal pull-high of PB6 pin.
* Bit 7 (/PHB7) : = 0, Enable the internal pull-high of PB7 pin.
$=1$, Disable the internal pull-high of PB7 pin
- System Control Register: FE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
WDTE	EIS	LVRE	ROC	LPRE	CONC		

The FE register is both readable and writable.

* Bit 0~1 : Not used.
* Bit $2(C O N C)=1$, Enable Constant Sink Current Mode of PB1/IR pin.

PB1/IR Pin will provide constant output-low-sink current about 40 mA when PB1/IR pin is configured as output mode.
$=0$, Disable Constant Sink Current Mode of PB1/IR pin.

* Bit 3 (LPRE) = 1, Enable Low Power reset
= 0, Disable Low Power reset
* Bit $4(R O C)=1$, Enable R-option function of PA0 and PA1 pin.If a external resistor $430 \mathrm{~K} \Omega$ is connected / disconnected to VSS on PA0 (PA1) pin, the status of PA0 (PA1) is read as " 0 " / " 1 ".
$=0$, Disable R-option function of PAO and PA1 pin.
* Bit 5 (LVRE) $=1$, Enable low voltage reset. (Precise Low voltage reset selection by configuration word)
$=0$, Disable low voltage reset.(Precise Low voltage reset selection by configuration word)
* Bit 6 (EIS) $=1$, External interrupt pin is selected. The I/O control bit of PD1 (bit 1 of RC register) must be set to " 1 ", the status of INT pin can be read by reading PortD.
= 0, PD1 is bi-directional I/O pin.
* Bit $7($ WDTE $)=1$, Enable Watchdog timer.
$=0$, Disable Watchdog timer.
- Interrupt Mask Register: FF

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
T1IE	WDTIE	T2IE			EXIE	PBIE	TOIE

The FF register is both readable and writable.

* Bit 0 (TOIE) : = 1, Enable the Timer0 overflow interrupt.
= 0, Disable the Timer0 overflow interrupt.
* Bit 1 (PBIE) : = 1, Enable the PortB input change interrupt.
$=0$, Disable the PortB input change interrupt.
* Bit 2 (EXIE) : = 1, Enable the External INT pin interrupt.
= 0, Disable the External INT pin interrupt.
* Bit $3 \sim 4$: Not used.
* Bit 5 (T2IE) : = 1, Enable the Timer2 underflow interrupt.
= 0, Disable the Timer2 underflow interrup.
* Bit 6 (WDTIE) : If the watchdog interrupt function is enabled by programming configuration word, = 1, Enable watchdog interrupt.
= 0, Disable watchdog interrupt.
* Bit 7 (T1IE) : = 1, Enable the Timer1 underflow interrupt. $=0$, Disable the Timer1 underflow interrup.

3.3 Special Function Registers (Addressed by SFUN, SFUNR instruction)

8 bit Reload Down-Counter Timer1:

- Timer1 Initial/reload register: S0

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

* The S0 register is both readable and writable.
* Write: The initial/reload value.
* Read: The counter value.
- Timer1 control register1: S1

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0		
0:disable PWM1 output	PWM1 output 1: Active High output PWM1	1: Active Low						\quad	1:One-shot
:---:									
mode									
0:Non-Stop									
mode	\quad	1:re-load							
:---:									
mode									
0:continuous									
mode	\quad	1:Start count							
:---:									
0:Stop count									

* Re-load mode: The counter will load the initial value into the counter while counter underflows.
* Continuous mode: The counter will keep counting from FF while counter underflows.
* Non-stop mode: The counter will keep counting even counter underflows.
* One-shot mode: The counter will stop while counter underflows.
* The re-load / Continuous function is meaningful only in Non-stop mode.
* When Bit 7 is set " 1 ", then the PB6/PWM1 pin will be switch to PWM1 output.
* Notice: Always stop the counter then write initial value.
- Timer1 control register2: S2

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Timer1 clock source selection (T1S) 0:Internal instruction cycle clock 1:RTCC0 pin	RTCC0 pin signal edge select (T1E)	Prescaler1 function (PS1ENB) 0 : enable 1: disable	Prescale rate selection bits (PS1__ PS1_0) 000: $1: 2$ $001:$ $1: 4$ $010:$ $1: 8$ $011:$ $1: 16$ $100:$ $1: 32$ $101:$ $1: 64$ $110:$ $1: 128$ $111:$ $1: 256$		

* The S2 register is both readable and writable.
* Bit 4: =1, "Decrement counting" when high-to-low transition on RTCC0 pin for Timer1.
$=0$, "Decrement counting" when low-to-high transition on RTCCO pin for Timer1.
* The Prescaler1's output is the Timer1's clock source when Prescaler1 function is enabled.

- PWM1 register: S3

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

* The S3 register is only writable.
* Under PWM1 output is set "Active High" in Timer1 Control Register1, every time the Timer1 enable or underflow, PWM1 output will be set as low until the TIMER1's value equals to the PWM1 value then setting to high; When PWM1 output is set "Active Low" in Timer1 Control Register1 is the opposite.
* The Timer1's re-load value adjusts the output frequency and the PWM1 register defines the output waveform's duty.

- Prescaler1 of Timer1 Counter Register: S4

* The S4 register is readable.
* The content of S4 is the value of Prescaler1 Counter.
- Buzzer1 control register: S5

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0:disable Buzzer1 output 1:enable Buzzer 1 output				Frequency selection of Buzzer1 output (BZ1S3 : BZ1S0) 0000: Clock source frequency of Prescaler1 / 2 0001: Clock source frequency of Prescaler1 / 4 0010: Clock source frequency of Prescaler1 / 8 0011: Clock source frequency of Prescaler1 / 16 0100: Clock source frequency of Prescaler1 / 32 0101: Clock source frequency of Prescaler1 / 64 0110: Clock source frequency of Prescaler1/ 128 0111: Clock source frequency of Prescaler1 / 256 1000: Clock source frequency of Timer1 / 2 1001: Clock source frequency of Timer1 / 4 1010: Clock source frequency of Timer1 / 8 1011: Clock source frequency of Timer1 / 16 1100: Clock source frequency of Timer1 / 32 1101: Clock source frequency of Timer1 / 64 1110: Clock source frequency of Timer1 / 128 1111: Clock source frequency of Timer1 / 256			
W							

* The S5 register is only writable.
* When Bit 7 is set " 1 ", then the PB7/BZ1 pin will be switch to Buzzer1 output.

FIGURE 3.1: Block Diagram of Timer1, Buzzer1 and PWM1

FIGURE 3.2: Timing Chart of Timer1 and PWM1

PWM1 Output (PWM1 output is active high)

- IR Control register: S6

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
IR Clock(Fosc) Input Frequency Selection 0: 455KHz 1: 3.58 MHz					```0:High Carry output 1:Low Carry output```	$\begin{aligned} & \text { IR Output } \\ & \text { Frequency } \\ & \text { Secection } \\ & 0: 38 \mathrm{~K} \mathrm{~Hz} \\ & 1: 57 \mathrm{~K} \mathrm{~Hz} \end{aligned}$	IR function 0:disable 1:enable

* The S6 register is only writable.
* If Bit0 is set "1" to enable IR function, the PB1/IR pin will be auto configured to output mode and output the data of PortB bit1 in IR function mode.
* The "High Carry Output " means to output high data with IR carry to PB1/IR pin and the "Low Carry Output " is the opposite.

FIGURE 3.3: Timing Chart of IR Carry Output

- Table High-Order Byte Pointer register (TBHP): S7

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
					D2	D1	D0

* The S7 register is both readable and writable.
* The content of TBHP will associate with ACC to be loaded into PC bits<10:0> when program executes CALLA or GOTOA instruction. Additionally, the TBHP register is used for high part address to access ROM code data in executing the TABLE instruction.
- Table High-Order Byte Data register (TBH): S8

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		D5	D4	D3	D2	D1	D0

* The S8 register is only readable.
* Move the high byte of the addressed ROM code to TBH register by TABLE instruction.

8 bit Reload Down-Counter Timer2:

- Timer2 Initial/reload register: S9

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

* The S9 register is both readable and writable.
* Write: The initial/reload value.
* Read: The counter value.
- Timer2 control register1: SA

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0:disable PWM2 output 1:enable PWM2 output	PWM2 output 0: Active High 1: Active Low				1:One-shot mode 2:Non-Stop mode	1:re-load mode 0:continuous mode	1:Start count 0:Stop count
W	W				R/W	R/W	R/W

* Re-load mode: The counter will load the initial value into the counter while counter underflows.
* Continuous mode: The counter will keep counting from FF while counter underflows.
* Non-stop mode: The counter will keep counting even counter underflows.
* One-shot mode: The counter will stop while counter underflows.
* The re-load / Continuous function is meaningful only in Non-stop mode.
* When Bit 7 is set " 1 ", then the PC0/PWM2 pin will be switch to PWM2 output.

Notice: Always stop the counter then write initial value.

- Timer2 control register2: SB

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
		Timer2 clock source selection (T2S) 0:Internal instruction cycle clock 1:RTCC1 pin	RTCC1 pin signal edge select (T2E)	Prescaler2 function (PS2ENB) 0: enable 1: disable	Prescale rate selection bits (PS2_2 PS2_0) 000: $1: 2$ $001:$ $1: 4$ $010:$ $1: 8$ $011:$ $1: 16$ 100: $1: 32$ 101: $1: 64$ $110:$ $1: 128$ $111:$ $1: 256$		

* The SB register is both readable and writable.
* Bit 4: =1, "Decrement counting" when high-to-low transition on RTCC1 pin for Timer2.
$=0$, "Decrement counting" when low-to-high transition on RTCC1 pin for Timer2.
* The Prescaler2's output is the Timer2's clock source when Prescaler2 function is enabled.
- PWM2 register: SC

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
D7	D6	D5	D4	D3	D2	D1	D0

* The SC register is only writable.
* Under PWM2 output is set "Active High" in Timer2 Control Register1, every time the Timer2 enable or underflow, PWM2 output will be set as low until the TIMER2's value equals to the PWM2 value then setting to high; When PWM2 output is set "Active Low" in Timer2 Control Register1 is the opposite.
* The Timer2's re-load value adjusts the output frequency and the PWM2 register defines the output waveform's duty.
- Prescaler2 of Timer2 Counter Register: SD
* The SD register is readable.
* The content of SD is the value of Prescaler2 Counter.
- Buzzer2 control register: SE

Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
0:disable Buzzer2 output 1:enable Buzzer2 output				Frequency selection of Buzzer output (BZ2S3 : BZ2SO) 0000: Clock source frequency of Prescaler2 / 2 0001: Clock source frequency of Prescaler2 / 4 0010: Clock source frequency of Prescaler2 / 8 0011: Clock source frequency of Prescaler2 / 16 0100: Clock source frequency of Prescaler2 / 32 0101: Clock source frequency of Prescaler2 / 64 0110: Clock source frequency of Prescaler2/ 128 0111: Clock source frequency of Prescaler2 / 256 1000: Clock source frequency of Timer2 / 2 1001: Clock source frequency of Timer2 / 4 1010: Clock source frequency of Timer2 / 8 1011: Clock source frequency of Timer2 / 16 1100: Clock source frequency of Timer2 / 32 1101: Clock source frequency of Timer2 / 64 1110: Clock source frequency of Timer2 / 128 1111: Clock source frequency of Timer2 / 256			
W							

* The SE register is only writable.
* When Bit 7 is set " 1 ", then the PC1/BZ2 pin will be switch to buzzer2 output.

FIGURE 3.4: Block Diagram of Timer2, Buzzer2 and PWM2

FIGURE 3.5: Timing Chart of Timer2 and PWM2

PWM2 Output (PWM2 output is active high)

3.4 RESET

This device may be reset in one of the following events:
(1) Power-on reset: At power-up, this device will be kept in a reset condition until the power voltage on Reset pin has reached a logic high level.
(2) Reset pin is "LOW" state input. (if Reset pin is configured as reset function.)
(3) WDT time-out reset (if WDT is enabled and WDT reset function is enabled.)
(4) Low voltage reset (if Low voltage function is enabled.)

The contents of registers after reset are listed below:

Address	Register	Power-On Reset	Reset or WDT Reset
00h	INAR	XXXX XXXX	uuuu uuuu
01h	Timer0	xxxx xxxx	uuuu uuuu
02h	PCL	00000000	00000000
03h	STATUS	0001 1xxx	000\# \#uuu
04h	FSR	00xx xxxx	00 uu uuuu
05h	PortA	xxxx xxxx	uuuu uuuu
06h	PortB	x $x \times x$ xxxx	uuuu uuuu
07h	PortC	XXXX XXXX	uuuu uuuu
08h	PortD	---- --xx	---- --uu
09h	PortC Pull High Control Register	11111111	11111111
OAh	PortC Pull Down Control Register	11111111	11111111
OBh	PortC Open Drain Control Register	00000000	00000000
OCh	PortD Control Register	00111111	00111111
0Fh	Interrupt Status Register	000- -000	000- -000
10h-1Fh	General Storage Register	xxxx xxxx	uuuu uuuu
20h-3Fh	General Storage Register (Bank0 ~ Bank3)	xxxx xxxx	uuuu uuuu
N/A	ACC	xxxx xxxx	uuuu uuuu
N/A	TOMODE	00111111	00111111
N/A	Control PortA I/O Reg (F5)	11111111	11111111
N/A	Control PortB I/O Reg (F6)	11111111	11111111
N/A	Control PortC I/O Reg (F7)	11111111	11111111
N/A	PA4 ~ PA7 Control Register (F8)	---- 1111	---- 1111
N/A	PortB Input Change Interrupt Control Register (F9)	11111111	11111111
N/A	Prescaler of Timer0 and WDT Register(FA)	11111111	11111111
N/A	Pull Down Control Register (FB)	11111111	11111111
N/A	PortB Open Drain Control Register (FC)	00000000	00000000
N/A	PortB Pull High Control Register (FD)	11111111	11111111
N/A	System Control Register(FE)	1010 00--	1010 00--
N/A	Interrupt Mask Register (FF)	000- -000	000--000
N/A	Timer1 Initial/reload register(S0)	xxxx xxxx	uuuu uuuu
N/A	Timer1 control register1 (S1)	00-- -000	00-- -000
N/A	Timer1 control register2 (S2)	--11 1111	--11 1111
N/A	PWM1 register(S3)	xxxx xxxx	uuuu uuuu
N/A	Prescaler1 of Timer1 Counter Register(S4)	11111111	11111111
N/A	Buzzer1 Control Register(S5)	0--- 1111	0--- 1111
N/A	IR Control register(S6)	0--- -000	0--- -000

Address	Register	Power-On Reset	Reset or WDT Reset
N/A	Table High-Order Byte Pointer register (S7)	---- -xxx	---- -uuu
N/A	Table High-Order Byte Data register (S8):	$--x x$ xxxx	-- uu uuuu
N/A	Timer2 Initial/reload register(S9)	$x x x x$ xxxx	uuuu uuuu
N/A	Timer2 control register1 (SA)	$00---000$	$00---000$
N/A	Timer2 control register2 (SB)	--111111	--111111
N/A	PWM2 register(SC)	$x x x x$ xxxx	uuuu uuuu
N/A	Prescaler2 of Timer2 Counter Register(SD)	11111111	11111111
N/A	Buzzer2 Control Register(SE)	$0---1111$	$0---1111$

Note: $\mathrm{x}=$ unknown, $\mathrm{u}=$ unchanged, $-=$ unimplemented, $\quad \#=$ see the following table

TO/PD status after Reset:

Condition	Status: bit 4 TO	Status: bit 3 PD
Power-on Reset	1	1
Reset pin Reset (Non-SLEEP)	u	u
Reset pin Wake-up Reset or Interrupt	1	0
Wake-up from SLEEP	0	1
WDT Reset (Non-SLEEP)	0	0
WDT Wake-up Reset from SLEEP		

Note: u = unchanged
TO/PD status is affected by events:

Event	Status: bit 4 TO	Status: bit 3 PD
Power-on	1	1
SLEEP instruction	1	0
CLRWDT instruction	1	1
WDT Time-out when WDT reset is enabled	0	u

Note: u = unchanged
WDT wake-up from sleep mode: executing the SLEEP instruction can force this device entering into sleep mode (power saving mode). While system is in sleep mode, the WDT is cleared but keeps running. This device can be awakened by WDT time-out when WDT reset function is enabled or reset input on Reset pin.

The following figure is power-on reset circuit for slow VDD power-up:

3.5 I/O Ports

The Port A and Port B are Bi-directional tri-state I/O ports. Both Port A and Port B are 8-pin I/O port. Bit13 of the Configuration Word will decide the Pin function of PA5/Reset. If this bit is set " 1 ", the PA5/Reset Pin will be assigned to Reset function (Default) and forced as input; If this bit is cleared to " 0 ", the PA5/Reset Pin will be assigned to digital I/O function.

The Bit[2:0] of the Configuration Word can select oscillator mode. Besides, these bits can decide the pin function of PA6 and PA7.

The I/O Mode Register F5(Port A) and F6(Port B) can configure these I/O pins as output or input. The PA4~PA7 Control Register F8 can control the internal pull-high or pull-down of PA4 ~ PA7. The Pull Down Control Register FB can enable corresponding internal pull-down of PB3 ~ PB0, PA3 ~ PA0. The Open Drain Control Register FC can enable open drain function of PB7 ~ PB0. The Pull High Control Register FD can enable internal pull-high of PB7 ~ PB0.

Setting PortB Input Change Interrupt Control Register F9 can enable input Status Change Interrupt/Wake-up function.

PD1 provide an external interrupt function by setting the EIS bit of the System Control Register FE.
PA1, PA0 are the R-option pins enabled by setting the ROC bit of the System Control Register FE. If an external resistor $430 \mathrm{~K} \Omega$ is connected / disconnected to VSS on PA0 (PA1) pin, the status of PA0 (PA1) is read as " 0 " / " 1 ".

FIGURE 3.6: Port A0~Port A4, Port A6 and Port A7 Equivalent Circuit (Pull-down or Pull high is not shown in the figure)

FIGURE 3.7: Port A5 Equivalent Circuit (Pull-down or Pull high is not shown in the figure)

Read PortA

FIGURE 3.8: PB0 ~ PB7 Equivalent Circuit (Pull-down, pull-high and open-drain are not shown in the figure)

FIGURE 3.9: PDO/INT Equivalent Circuit (Pull-down, pull-high and open-drain are not shown in the figure)

3.6 Real Time Clock (TIMERO) And Watchdog Timer

3.6.1 Timer0

Timer0 is an 8-bit timer/counter. The clock source of Timer0 can be from the internal clock or by an external clock source presented at the RTCC0 pin.

To select the internal clock source, bit 5 of the TOMODE register should be reset. In this mode, Timer0 will increase by 1 in every instruction cycle (without prescaler).

To select the external clock source, bit 5 of the TOMODE register should be set. In this mode, Timer0 will increase by 1 on every falling edge or rising edge of RTCCO pin is controlled by bit 4 of TOMODE register.

3.6.2 Watchdog Timer (WDT)

The Watchdog Timer is a free running on-chip RC oscillator. This RC oscillator is separated from the RC oscillator of the OSCI pin. That means the WDT will keep running even when the oscillator driver is turned off, such as in sleep mode. During normal operation or in sleep mode, a WDT time-out will cause the device reset and the TO bit (bit 4 of STATUS register) will be cleared.

Without prescaler, the WDT time-out period is 18 ms . This period can be increased by using the prescaler. The division ratio of prescaler is up to $1: 128$. Thus, the longest time-out period is approximately 2.3 s .

3.6.3 Prescaler

The 8-bit prescaler may be assigned to either the Timer0 or the WDT through the PSC bit (bit 3 of the TOMODE register). Setting this bit assigns the prescaler to the WDT. Resetting this bit assigns the prescaler to the Timer0. The PS2:PS0 bits determine the prescale ratio. When assigned to Timer0, the prescaler will be cleared by instructions which write to Timer0 Register. A CLRWDT instruction will clear the WDT and prescaler when assigned to WDT. The prescaler can not be assigned to both the Timer0 and WDT simultaneously.

3.6.4 Switching Prescaler Assignment

The prescaler switch can be assigned by software control. To avoid an unintended RESET, the following program rule must be observed when changing the prescaler assignment from Timer0 to WDT :

```
CLRWDT
MOVIA b'xxxxlxxx'
CLRR TIM0
T0MODE
```

A CLRWDT instruction should be executed before changing the prescaler assignment from WDT to Timer0 :

CLRWDT

MOVIA b'xxxx0xxx'
T0MODE

FIGURE 3.10: Block Diagram of Timer0 and WDT

3.7 Oscillator Configuration

This device supports six oscillator modes. The user can program the three Bit[2:0] of configuration word to select appropriate mode. These oscillator modes offered as:

- IRC: Internal Resistor and Capacitor oscillator
- EXT-R: External Resistor and internal Capacitor oscillator
- LF-XTAL: Low frequency crystal oscillator
- XTAL: Standard crystal oscillator
- HF-XTAL: High frequency crystal oscillator
- ERC: External Resistor and Capacitor oscillator

3.7.1 IRC Mode

The Internal Resistor and Capacitor mode (IRC) can be enabled by setting Bit[2:0] of configuration word and program Bit[5:3] to select output frequency of internal oscillator.

In IRC mode, PA6/Xin/Rin pin will be assigned to PA6 digital I/O, PA7/Xout pin will be assign to PA7 digital I/O or output instruction clock depend on the selection of configuration word Bit[2:0].

3.7.2 EXT-R Mode

In EXT-R mode adopts External resistor and internal capacitor to creat oscillator so PA6/Xin/Rin pin need to connect to Rext.By setting Bit[2:0] and Bit[5:3] of configuration word to enter EXT-R mode and select oscillator frequency. Resistance value of Rext can be tuned to produce more precise oscillator's frequency. The recommended value of Rext is 200 K .

In EXT-R mode, PA7/Xout pin will output instruction clock.

3.7.3 LF-XTAL, XTAL, HF-XTAL Mode

AM8EB serial provide LF-XTAL, XTAL and HF-XTAL for different frequency crystal or ceramic oscillator. In these mode, a crystal or ceramic resonator is connected to Xin pin and Xout pin to create oscillation, refer to the specification of crystal or ceramic resonator to adopt appropriate $\mathrm{C} 1, \mathrm{C} 2$ or RS value.

TABLE 3.2: Capacitor Value for Crystal (VDD = 3V)

Mode	Freq.	C1 (pF)	C2 (pF)
HF-XTAL	20 MHz	$5 \sim 10$	$5 \sim 10$
	16 MHz	$5 \sim 10$	$5 \sim 10$
	10 MHz	$5 \sim 30$	$5 \sim 30$
XTAL	8 MHz	$5 \sim 20$	$5 \sim 20$
	4 MHz	$5 \sim 30$	$5 \sim 30$
	1 MHz	$5 \sim 30$	$5 \sim 30$
	455 KHz	$10 \sim 100$	$10 \sim 100$
LF-XTAL	100 KHz	$5 \sim 20$	$5 \sim 20$
	32.768 KHz	$5 \sim 30$	$5 \sim 30$

In LF-XTAL, XTAL or HF-XTAL mode, the Xin pin can be driven directly by an external clock source.

3.7.4 ERC Mode

The oscillator frequency of External Resistor and Capacitor Oscillator mode (ERC) will be influenced by the value of Rext, Cext, the supply voltage and the working temperature. In addition to these, the frequency will slightly vary between different chip due to the variation of manufacturing process parameter.

In order to keep stable oscillator frequency, the value of Rext should be less than 1M ohm, the value of Cext should be greater than 20pF. In ERC mode, PA7/Xout pin will output instruction clock.

TABLE 3.3: ERC Oscillator Frequency Table

Cext	Rext	OSC @ 3V	OSC @ 5V
20 pF	3.3 K	4.43 MHz	4.86 MHz
	5.1 K	3.37 MHz	3.43 MHz
	10 K	2.00 MHz	1.93 MHz
	100 K	254.5 KHz	221.4 KHz
100 pF	3.3 K	1.93 MHz	1.88 MHz
	5.1 K	1.36 MHz	1.27 MHz
	10 K	741.9 KHz	668.7 KHz
	100 K	83.3 KHz	71.8 KHz
	3.3 K	926 KHz	845 KHz
	5.1 K	628 KHz	562 KHz
	10 K	330 KHz	289 KHz
	100 K	35 KHz	30 KHz

3.8 Interrupts

The AM8EB057A has six sources of interrupt:

- Timer0 overflow
- Timer1 underflow
- Timer2 underflow
- PB input change
- External Interrupt Pin
- Watchdog time out Interrupt (If the function is enabled by setting the configuration word.)

Interrupt Status Register(ROF) is the interrupt flag register that recodes the interrupt requests in the relative flags. The global interrupt is enabled by the ENI instruction and is disabled by the DISI instruction. Individual interrupts can be enabled/disabled through their corresponding enable bits in Interrupt Mask Register.

When one of the interrupt occurs, the next instruction will be fetched from address 008 H . Once in the interrupt service routine, the source of an interrupt can be determined by polling Interrupt Status Register(ROF).The interrupt flag bit must be cleared by program before leaving the interrupt service routine and before interrupts
are enabled to avoid recursive interrupts. The RETFIE instruction exits the interrupt routine and enables the global interrupt.

The flag bit (except PBIF bit) in Interrupt Status Register is set by interrupt event regardless of the status of its mask bit or the execution of ENI. Reading the Interrupt Status Register will be the logic AND of the Interrupt Status Register and Interrupt Mask Register.

When an interrupt is generated by the INT instruction, the next instruction will be fetched from address 001 h .

3.8.1 External INT Interrupt

External interrupt on INT pin is rising or falling edge triggered can be selected by INTEDG bit of TOMODE Register. When a valid edge appears on the INT pin, then the flag bit EXIF of the Interrupt Status Register is set. Clearing the EXIE bit of Interrupt Mask Register can disable this interrupt.

3.8.2 TimerO Interrupt

An overflow (FFh \rightarrow 00h) in the Timer0 register will set the flag bit TOIF. Clearing TOIE bit of the Interrupt Mask Register can disable this interrupt.

3.8.3 Timer1 Interrupt

An underflow (00h \rightarrow FFh) in the Timer1 register will set the flag bit T1IF. Clearing T1IE bit of the Interrupt Mask Register can disable this interrupt.

3.8.4 Timer2 Interrupt

An underflow (00h \rightarrow FFh) in the Timer2 register will set the flag bit T2IF. Clearing T2IE bit of the Interrupt Mask Register can disable this interrupt.

3.8.5 Port B Input Change Interrupt

An input change on $\mathrm{PB}<7: 0>$ will set the flag bit PBIF. Clearing PBIE bit of the Interrupt Mask Register can disable this interrupt.

Setting the PortB Input Change Interrupt Control Register (F9) can enable the PortB Input Change Interrupt individually. Reading PortB is necessary before the port B input change interrupt is enabled. When the pin is configured as output, the Input Change Interrupt function will be disabled.

3.8.6 Watchdog timer out Interrupt

Programming configuration word can enable the watchdog interrupt function. If this function is enabled, a WDT time-out will set the flag bit WDTIF. Clearing WDTIE bit of the Interrupt Mask Register can disable this interrupt.

3.9 Power-Down Mode (Sleep)

Executing a SLEEP instruction enters power-down mode. When SLEEP instruction is executed, the PD bit of Status register will be cleared, the TO bit will be set, the Watchdog Timer will be cleared and keeps running, and the oscillator driver is turned off. All I/O pins maintain the status they had before the SLEEP instruction was executed.

3.9.1 Wake-up from SLEEP Mode

The device can wake-up from SLEEP mode through one of the following events.

1. External reset input on Reset pin.
2. WDT time-out reset or WDT time-out interrupt (depend on which one is enabled by setting configuration word).
3. Interrupt from PD1/INT pin, or PortB change interrupt. (if enabled)

External reset input on Reset pin and WDT time-out reset will cause a device reset. The PD and TO bits can be used to determine the cause of device reset. The PD bit is set on power-up and is cleared when SLEEP instruction is executed. The TO bit is cleared if a WDT reset occurred.

An interrupt event is intended to wake-up the device, the corresponding interrupt function should be enabled before SLEEP. If ENI is executed before SLEEP, the program will branch to the interrupt address (008h) after wake-up. If DISI is executed before SLEEP, the device will continue execution at the instruction next to SLEEP instruction after wake-up.

3.10 Configuration Word

Bit	Name	Function
2,1,0	Fosc<2:0>	$=000$, EXT-R mode (External resistor and internal capacitor), PA6/Xin/Rin pin will connect to Rext and PA7/Xout pin will output instruction clock. $=001$, IRC mode (Internal RC), PA6/Xin/Rin pin will be assigned to PA6 and PA7/Xout pin will output instruction clock. $=011$, IRC mode (Internal RC), PA6/Xin/Rin pin will be assigned to PA6 and PA7/Xout pin will be assigned to PA7. $=100$, LF-XTAL mode. $=101, \underline{\text { XTAL }}$ mode. $=110$, HF-XTAL mode. $=111$, ERC mode (External RC), PA7/Xout pin will output instruction clock. (Default)
5,4,3	IEF<2:0>	IRC / EXT-R frequency selection $=000, \mathrm{IRC}=20 \mathrm{MHz}$ $=001, \mathrm{IRC}=16 \mathrm{MHz}$ $=010, \mathrm{IRC}=8 \mathrm{MHz}$ $=011, \mathrm{IRC}=4 \mathrm{MHz}$ $=100, \mathrm{IRC}=2 \mathrm{MHz}$ $=101, \mathrm{IRC}=1 \mathrm{MHz}$ $=110, \mathrm{IRC}=455 \mathrm{KHz}$ $=111, \mathrm{IRC}=32 \mathrm{KHz}$ (Default)
6	WDTEN	=1, Watchdog Timer enable (Default) $=0$, Watchdog Timer disable
7	WDTREN	=1, Watchdog Timer reset enable (Default) $=0$, Watchdog Timer interrupt enable
8	CLK	Instruction period selection $=1$, four oscillator periods (Default) =0, two oscillator periods
11,10,9	LVR<2:0>	Precise Low voltage reset selection $=001$, enable, LVR voltage $=2.0 \mathrm{~V}$ $=010$, enable, LVR voltage $=2.6 \mathrm{~V}$ $=011$, enable, LVR voltage $=2.8 \mathrm{~V}$ $=100$, enable, LVR voltage $=3.2 \mathrm{~V}$ $=101$, enable, LVR voltage $=3.6 \mathrm{~V}$ $=110$, enable, LVR voltage $=4.3 \mathrm{~V}$ =111, disable (Default)
12	PA5EN	Pin Function Selection of PA5/Reset =1, assigned to Reset function and force PA5/Reset to input Pin (Default) $=0$, assigned to PA5 digital I/O function
13	Code-protect	=1, EPROM unprotected (Default) =0, EPROM protected

4. Instruction Set

AM8EB057A include total 55 instructions, and summarized in the following table.

Mnemonic Operands	Description	Cycles	Instruction Code				Status Affected
NOP	No operation	1	00	0000	0000	0000	-
SLEEP	Go into standby mode	1	00	0000	0000	0001	TO, PD
CLRWDT	Clear Watchdog Timer	1	00	0000	0000	0010	TO, PD
TOMODE	Load TOMODE Register	1	00	0000	0000	0011	-
ENI	Enable Interrupt	1	00	0000	0000	0100	
IOST F	Load IOST Register	1	00	0000	0000	ffff	-
RET	Return from subroutine	2	00	0000	0001	0000	-
RETIE	Return from interrupt, Enable Interrupt	2	00	0000	0001	0001	-
DAA	Decimal Adjust ACC	1	00	0000	0001	0010	C
DISI	Disable Interrupt	1	00	0000	0001	0011	-
TOMODER	Move TOMODE Register to ACC	1	00	0000	0001	0100	-
IOSTR F	Move IOST Register to ACC	1	00	0000	0001	ffff	-
SFUN S	Load SFUN Register	1	00	0000	0010	ssss	-
SFUNR S	Move SFUN Register to ACC	1	00	0000	0011	ssss	-
MOVAR R	Move ACC to R	1	00	0000	1 rrr	rrrr	-
MOVR R, d	Move R	1	00	0001	drrr	rrrr	Z
CLRA	Clear ACC	1	00	0010	0000	0000	Z
INT	S/W interrupt	3	00	0010	0001	0000	-
TABLEA	Read ROM Code to TBH and ACC	2	00	0010	0001	0001	-
CALLA	Call subroutine	2	00	0010	0001	0010	-
GOTOA	Unconditional branch	2	00	0010	0001	0011	-
CLRR R	Clear R	1	00	0010	1 rrr	rrrr	Z
ADDAR R, d	Add ACC and R	1	00	0011	drrr	rrrr	C, DC, Z
SUBAR R, d	Subtract ACC from R	1	00	0100	drrr	rrrr	C, DC, Z
INCR R, d	Increment R	1	00	0101	drrr	rrrr	Z
DECR R, d	Decrement R	1	00	0110	drrr	rrrr	Z
COMR R, d	Complement R	1	00	0111	drrr	rrrr	Z
ANDAR R, d	AND ACC with R	1	00	1000	drrr	rrrr	Z
IORAR R, d	Inclusive OR ACC with R	1	00	1001	drrr	rrrr	Z
XORAR R, d	Exclusive OR ACC with R	1	00	1010	drrr	rrrr	Z
RRR R, d	Rotate right R	1	00	1011	drrr	rrrr	C
RLR R, d	Rotate left R	1	00	1100	drrr	rrrr	C
SWAPR R, d	Swap halves R	1	00	1101	drrr	rrrr	-
INCRSZ R, d	Increment R, Skip if 0	$\begin{gathered} 1 \text { or } \\ \text { 2(skip) } \\ \hline \end{gathered}$	00	1110	drrr	rrrr	-
DECRSZ R, d	Decrement R, Skip if 0	$\begin{gathered} 1 \text { or } \\ \text { 2(skip) } \\ \hline \end{gathered}$	00	1111	drrr	rrrr	-
RETIA I	Return, place immediate in A	2	01	0000	iiii	iiii	-
MOVIA I	Move immediate to ACC	1	01	0001	iiii	iiii	-
ANDIA I	AND immediate with ACC	1	01	0010	iiii	iiii	Z
IORIA I	Inclusive OR immediate with ACC	1	01	0011	iiii	iiii	Z
XORIA I	Exclusive OR immediate with ACC	1	01	0100	iiii	iiii	Z
ADDIA I	Add ACC and immediate	1	01	0101	iiii	iiii	C, DC, Z
ADCIA I	Add ACC and immediate with Carry	1	01	0110	iiii	iiii	C, DC, Z
SUBIA I	Subtract ACC from immediate	1	01	0111	iiii	iiii	C, DC, Z

If d is " 0 ", the result is stored in the ACC register.
If d is " 1 ", the result is stored back in register R.

ADCAR (Add ACC and R with Carry)

Syntax: ADCAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\mathrm{ACC}+\mathrm{R}+\mathrm{C} \rightarrow$ dest
Status Affected: C, DC, Z
Description: Add the contents of the ACC register and register ' R ' with Carry. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is ' 1 ', the result is stored back in register ' R '.

Cycles: 1

ADCIA (Add ACC and Immediate with Carry)

Syntax: ADCIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: $\mathrm{ACC}+\mathrm{I}+\mathrm{C} \rightarrow \mathrm{ACC}$
Status Affected: C, DC, Z
Description: Add the contents of the ACC register and the 8-bit immediate ' I ' with Carry. The result is placed in the ACC register.

Cycles: 1

ADDAR (Add ACC and R)
Syntax: ADDAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\mathrm{ACC}+\mathrm{R} \rightarrow$ dest
Status Affected: C, DC, Z
Description: Add the contents of the ACC register and register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is ' 1 ', the result is stored back in register ' R '.

Cycles: 1

ADDIA (Add ACC and Immediate)

Syntax: ADDIA I
Operands: $0 \leq \mathrm{I} \leq 255$

Operation: ACC $+\mathrm{I} \rightarrow$ ACC
Status Affected: C, DC, Z
Description: Add the contents of the ACC register with the 8-bit immediate ' I '. The result is placed in the ACC register.

Cycles: 1

ANDAR (AND ACC and R)

Syntax: ANDAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: ACC and $\mathrm{R} \rightarrow$ dest

Status Affected: Z

Description: The contents of the ACC register are AND'ed with register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is ' 1 ', the result is stored back in register ' R '.

Cycles: 1

ANDIA (AND Immediate with ACC)

Syntax: ANDIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: ACC AND I \rightarrow ACC

Status Affected: Z

Description: The contents of the ACC register are AND'ed with the 8 -bit immediate ' I '. The result is placed in the ACC register.

Cycles: 1

BCR (Clear Bit in R)

Syntax: BCR R, b
Operands: $0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: $0 \rightarrow R$
Status Affected: None
Description: Clear bit ' b ' in register ' R '.
Cycles: 1

BSR (Set Bit in R)

Syntax: BSR R, b
Operands: $0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: $1 \rightarrow \mathrm{R}<\mathrm{b}>$
Status Affected: None
Description: Set bit ' b ' in register ' R '.
Cycles: 1

BTRSC (Test Bit in R, Skip if Clear)

Syntax: BTRSC R, b
Operands: $0 \leq R \leq 127$
$0 \leq b \leq 7$
Operation: Skip if $\mathrm{R}<\mathrm{b}>=0$
Status Affected: None
Description: If bit ' b ' in register ' R ' is 0 , the next instruction is skipped. If bit ' b ' is 0 , the next instruction fetched during the current instruction execution is discarded, and a NOP is executed instead making this a 2-cycle instruction..

Cycles: 1(2)

BTRSS (Test Bit in R, Skip if Set)

Syntax: BTRSS R, b
Operands: $0 \leq R \leq 127$

$$
0 \leq b \leq 7
$$

Operation: Skip if $R=1$
Status Affected: None
Description: If bit ' b ' in register ' R ' is ' 1 ', the next instruction is
skipped. If bit ' b ' is ' 1 ', the next instruction fetched
during the current instruction execution, is
discarded and a NOP is executed instead, making
this a 2-cycle instruction.
Cycles: 1(2)

CALL (Call Subroutine)

Syntax: CALL I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: PC +1 \rightarrow Top of Stack;
Status<6:5> \rightarrow PC<10:9>
" 0 " \rightarrow PC<8>
$1 \rightarrow P C<7: 0>$
Status Affected: None
Description: Subroutine call. First, return address (PC+1) is pushed onto the stack. The 8 -bit immediate address is loaded into PC bits <7:0>. The Status <6:5> load into $\mathrm{PC}<10: 9>, \mathrm{PC}<8>$ is cleared.

CALL is a two-cycle instruction.
Cycles: 2

CALLA (Call Subroutine)

Syntax: CALLA
Operands: None
Operation: $\mathrm{PC}+1 \rightarrow$ Top of Stack;
$\{[$ TBHP], [ACC]\} $\rightarrow \quad \mathrm{PC}<10: 0>$
Status Affected: None
Description: Subroutine call. First, return address (PC+1) is pushed onto the stack. The content of TBHP and ACC is loaded into PC bits < 10:0 >. CALLA is a two-cycle instruction.

Cycles: 2

CLRA (Clear ACC)

Syntax: CLRA
Operands: None
Operation: 00h \rightarrow ACC;
$1 \rightarrow \quad Z$
Status Affected: Z
Description: The ACC register is cleared. Zero bit (Z) is set.
Cycles: 1

CLRR (Clear R)

Syntax: CLRR R
Operands: $0 \leq R \leq 127$
Operation: $00 \mathrm{~h} \rightarrow \mathrm{R}$;
$1 \rightarrow Z$
Status Affected: Z
Description: The contents of register ' R ' are cleared and the Z bit is set.

Cycles: 1

CLRWDT (Clear Watchdog Timer)

Syntax: CLRWDT
Operands: None
Operation: 00h \rightarrow WDT;
00h \rightarrow WDT prescaler (if assigned);
$1 \rightarrow$ TO;
$1 \rightarrow \mathrm{PD}$
Status Affected: TO,PD
Description: The CLRWDT instruction resets the WDT. It also resets the prescaler if the prescaler is assigned to the WDT and not Timer0. Status bits TO and PD are set.

Cycles: 1

COMR (Complement R)

Syntax: COMR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\sim R \rightarrow$ dest
Status Affected: Z
Description: The contents of register ' R ' are complemented. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

CMPAR (Compare ACC and R)

Syntax: CMPAR R
Operands: $0 \leq R \leq 127$
Operation: R - ACC
Status Affected: C, Z
Description: Compare ACC and R. Subtract (2's complement method) the ACC register from register ' R ' that will not change the content of $A C C$ and R.

Cycles: 1

DAA (Adjust ACC's data format from HEX to DEC)

Syntax: DAA
Operands: None
Operation: If $[\mathrm{ACC}<3: 0 \gg 9]$ or $[\mathrm{DC}=1]$ then $\mathrm{A}<3: 0>+6$
\rightarrow ACC<3:0> ;
If $[\mathrm{ACC}<7: 4 \gg 9]$ or $[\mathrm{C}=1]$ then $\mathrm{A}<7: 4>+6$
\rightarrow ACC<7:4>
Status Affected: C
Description: Convert the ACC data from hexadecimal to decimal format after addition operation and restored to ACC. DAA instruction must be placed at the next Instruction of addition operation.

Cycles: 1

DECR (Decrement R)

Syntax: DECR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: R-1 \rightarrow dest
Status Affected: Z
Description: Decrement register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

[^2]
DECRSZ (Decrement R, Skip if 0)

Syntax: DECRSZ R, d
Operands: $0 \leq R \leq 127$

$$
\mathrm{d} \in[0,1]
$$

Operation: R-1 \rightarrow dest; skip if result $=0$
Status Affected: None
Description: The contents of register ' R ' are decremented. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '. If the result is 0 , the next instruction which is already fetched is discarded and a NOP is executed instead making it a two-cycle instruction.

Cycles: 1(2)

DISI (Disable Interrupt)

Syntax: DISI
Operands: None
Operation: $0 \rightarrow$ INT;
Status Affected: None
Description: Disable global interrupt.
Cycles: 1

ENI (Enable Interrupt)

Syntax: ENI
Operands: None
Operation: $1 \rightarrow$ INT;
Status Affected: None
Description: Enable global interrupt.
Cycles: 1

GOTO (Unconditional Branch)

Syntax: GOTO I
Operands: $0 \leq \mathrm{I} \leq 511$
Operation: Status<6:5> \rightarrow PC<10:9>

```
I }->\quad\textrm{PC}<8:0
```

Status Affected: None

Description: GOTO is an unconditional branch. The 9-bit immediate address is loaded into PC bits <8:0>. $\mathrm{PC}<10: 9>$ is loaded from the Status <6:5>. GOTO is a two-cycle instruction.

Cycles: 2

GOTOA (Unconditional Branch)

Syntax: GOTOA
Operands: None
Operation: $\{[$ TBHP], $[A C C]\} \rightarrow \quad P C<10: 0>$
Status Affected: None
Description: GOTOA is an unconditional branch. The content of TBHP and ACC is loaded into PC bits < 10:0 > . GOTOA is a two-cycle instruction.

Cycles: 2

INCR (Increment R)

Syntax: INCR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\mathrm{R}+1 \rightarrow$ dest
Status Affected: Z
Description: The contents of register ' R ' are incremented. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '.

Cycles: 1

INCRSZ (Increment R, Skip if 0)

Syntax: INCRSZ R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $R+1 \rightarrow$ dest, skip if result $=0$
Status Affected: None
Description: The contents of register ' R ' are incremented. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '. If the result is 0 , the next instruction which is already
fetched is discarded and a NOP is executed instead making it a two-cycle instruction.

Cycles: 1(2)

INT (S/W Interrupt)

Syntax: INT
Operands: None
Operation: PC +1 \rightarrow Top of Stack,
001h \rightarrow PC
Status Affected: None
Description: Interrupt subroutine call. First, return address $(P C+1)$ is pushed onto the stack. The address 001 h is loaded into PC bits <10:0>.

Cycles: 3

IORAR (OR ACC with R)

Syntax: IORAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: ACC or $\mathrm{R} \rightarrow$ dest
Status Affected: Z
Description: Inclusive OR the ACC register with register 'R'. If ' d ' is 0 the result is placed in the ACC register. If ' d ' is 1 the result is placed back in register ' R '.

Cycles: 1

IORIA (OR Immediate with ACC)

Syntax: IORIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: ACC or I \rightarrow ACC
Status Affected: Z
Description: The contents of the ACC register are OR'ed with
the 8 -bit immediate ' 1 '. The result is placed in the
ACC register.
Cycles: 1

IOST (Load IOST Register)

Syntax: IOST F
Operands: $F=5,6,7 \ldots$. f
Operation: ACC \rightarrow IOST register F

Status Affected: None

Description: IOST register ' F ' ($F=5,6,7 \ldots f$) is loaded with the contents of the ACC register.

Cycles: 1

IOSTR (Move IOST Register to ACC)

Syntax: IOSTR F
Operands: $F=5,6,7 \ldots f$
Operation: IOST register F \rightarrow ACC
Status Affected: None
Description: Move the contents of IOST register ' F ' ($\mathrm{F}=$ $5,6,7 \ldots f)$ to ACC register.

Cycles: 1

LCALL (Call Subroutine)

Syntax: LCALL I
Operands: $0 \leq \mathrm{I} \leq 2047$
Operation: PC +1 \rightarrow Top of Stack;
$1 \rightarrow \quad \mathrm{PC}<10: 0>$
Status Affected: None
Description: Subroutine call. First, return address $(P C+1)$ is pushed onto the stack. The 11-bit immediate address is loaded into PC bits <10:0>. LCALL is a two-cycle instruction.

Cycles: 2

LGOTO (Unconditional Branch)

Syntax: LGOTO I
Operands: $0 \leq \mathrm{I} \leq 2047$
Operation: $I \rightarrow P \mathrm{PC}<10: 0>$
Status Affected: None

Description: LGOTO is an unconditional branch. The 11-bit immediate value is loaded into $P C$ bits <10:0>. LGOTO is a two-cycle instruction.

Cycles: 2

MOVAR (Move ACC to R)

Syntax: MOVAR R
Operands: $0 \leq R \leq 127$
Operation: ACC $\rightarrow \mathrm{R}$
Status Affected: None
Description: Move data from the ACC register to register ' R '.
Cycles: 1

MOVIA (Move Immediate to ACC)

Syntax: MOVIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: $I \rightarrow$ ACC
Status Affected: None
Description: The 8-bit immediate ' I ' is loaded into the ACC register. The don't cares will assemble as 0s.

Cycles: 1

MOVR (Move R)

Syntax: MOVR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\mathrm{R} \rightarrow$ dest
Status Affected: Z
Description: The contents of register ' R ' is moved to destination ' d '. If ' d ' is 0 , destination is the ACC register. If ' d ' is 1 , the destination is file register ' R '. ' d ' is 1 is useful to test a file register since status flag Z is affected.

Cycles: 1

NOP (No Operation)

Syntax: NOP
Operands: None
Operation: No operation
Status Affected: None
Description: No operation.
Cycles: 1

RETIE (Return from Interrupt, Enable Interrupt)

Syntax: RETIE
Operands: None
Operation: Top of Stack \rightarrow PC
Status Affected: None
Description: The program counter is loaded from the top of the stack (the return address) and enable Interrupt function. This is a two-cycle instruction.

Cycles: 2

RETIA (Return with Immediate in ACC)

Syntax: RETIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: I \rightarrow ACC;
Top of Stack \rightarrow PC

Status Affected: None

Description: The ACC register is loaded with the 8-bit immediate ' I '. The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

Cycles: 2

RET (Return from Subroutine)

Syntax: RET
Operands: None
Operation: Top of Stack \rightarrow PC
Status Affected: None

Description: The program counter is loaded from the top of the stack (the return address). This is a two-cycle instruction.

Cycles: 2

RLR (Rotate Left fthrough Carry)

Syntax: RLR R, d
Operands: $0 \leq R \leq 127$

$$
d \in[0,1]
$$

Operation: $\mathrm{R}<7>\rightarrow \mathrm{C}$;
$R<6: 0>\rightarrow$ dest<7:1>;
$C \rightarrow$ dest<0>
Status Affected: C
Description: The contents of register ' R ' are rotated one bit to the left through the Carry Flag. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

RRR (Rotate Right fthrough Carry)

Syntax: RRR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $C \rightarrow$ dest<7>;
$R<7: 1>\rightarrow$ dest<6:0>;
$\mathrm{R}<0>\rightarrow \mathrm{C}$
Status Affected: C
Description: The contents of register ' R ' are rotated one bit to the right through the Carry Flag. If ' d ' is 0 , the result is placed in the ACC register. If ' d ' is 1 , the result is placed back in register ' R '.

Cycles: 1

SBCAR (Subtract ACC and Carry from R)

Syntax: SUBAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$

Operation: R-ACC - C \rightarrow dest
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC and Carry register from register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

SBCIA (Subtract ACC and Carry from Immediate)

Syntax: SBCIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: I-ACC-C \rightarrow ACC
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC register and Carry from the 8 -bit immediate ' I '. The result is placed in the ACC register.

Cycles: 1

SFUN (Load SFUN Register)

Syntax: SFUN S
Operands: $\mathrm{S}=0,1,2 \ldots$
Operation: ACC \rightarrow SFUN register S
Status Affected: None
Description: SFUN register ' S ' ($\mathrm{S}=0,1,2 \ldots$) is loaded with the contents of the ACC register.

Cycles: 1

SFUNR (Move SFUN Register to ACC)

Syntax: SFUNR S
Operands: $S=0,1,2 \ldots$
Operation: SFUN register $S \rightarrow A C C$
Status Affected: None
Description: Move the contents of SFUN register 'S' (S=
$0,1,2 \ldots)$ to ACC register.
Cycles: 1

SLEEP (Enter SLEEP Mode)

Syntax: SLEEP
Operands: None
Operation: 00h \rightarrow WDT;
00h \rightarrow WDT prescaler;
$1 \rightarrow$ TO;
$0 \rightarrow P D$
Status Affected: TO,PD
Description: Time-out status bit (TO) is set. The power-down status bit (PD) is cleared. The WDT and its prescaler are cleared. The processor is put into SLEEP mode.

Cycles: 1

SUBAR (Subtract ACC from R)

Syntax: SUBAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: R-ACC \rightarrow dest
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC register from register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

SUBIA (Subtract ACC from Immediate)

Syntax: SUBIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation:I-ACC \rightarrow ACC
Status Affected: C, DC, Z
Description: Subtract (2's complement method) the ACC
register from the 8 -bit immediate ' I '. The result is placed in the ACC register.

SWAPR (Swap nibbles in R)

Syntax: SWAPR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: $\mathrm{R}<3: 0>\rightarrow$ dest<7:4>;
$R<7: 4>\rightarrow$ dest<3:0>
Status Affected: None
Description: The upper and lower nibbles of register ' R ' are exchanged. If ' d ' is 0 , the result is placed in ACC register. If ' d ' is 1 , the result in placed in register 'R'.

Cycles: 1

TABLEA (Read ROM Code to TBH and ACC)

Syntax: TABLEA
Operands: None
Operation: ROM code $\{[$ TBHP],[ACC] $\}<7: 0>\rightarrow$ ACC
ROM code $\{[$ TBHP],[ACC] $\}<13: 8>\rightarrow$ TBH
Status Affected: None
Description: Move the low byte of the addressed ROM code to ACC and move the high byte of the addressed ROM code to TBH.

Cycles: 2

TOMODE (Load TOMODE Register)

Syntax: TOMODE
Operands: None
Operation: ACC \rightarrow TOMODE
Status Affected: None
Description: The content of the ACC register is loaded into the TOMODE register.

Cycles: 1

TOMODER (Move TOMODE Register to ACC)

Syntax: TOMODER
Operands: None
Operation: TOMODE \rightarrow ACC
Status Affected: None
Description: Move the content of TOMODE register to ACC
register.
Cycles: 1

XORAR (Exclusive OR ACC with R)

Syntax: XORAR R, d
Operands: $0 \leq R \leq 127$
$d \in[0,1]$
Operation: ACC xor $\mathrm{R} \rightarrow$ dest
Status Affected: Z
Description: Exclusive OR the contents of the ACC register with register ' R '. If ' d ' is 0 , the result is stored in the ACC register. If ' d ' is 1 , the result is stored back in register ' R '.

Cycles: 1

XORIA (Exclusive OR Immediate with ACC)

Syntax: XORIA I
Operands: $0 \leq \mathrm{I} \leq 255$
Operation: ACC xor I \rightarrow ACC
Status Affected: Z
Description: The contents of the ACC register are XOR'ed with the 8 -bit immediate ' l '. The result is placed in the ACC register.

Cycles: 1

5. Electrical Characteristics

5.1 Absolute Maximum Rating

Symbol	Rating	Unit
VDD \sim Vss	$-0.5 \sim+6.0$	V
Vin	Vss- $0.3<$ Vin $<$ VDD +0.3	V
Vout	GND $<$ Vout $<$ VDD	V
Top (operating)	$-40 \sim+85$	${ }^{\circ} \mathrm{C}$
Tst (storage)	$-65 \sim+150$	${ }^{\circ} \mathrm{C}$

5.2 DC Characteristics ($\mathrm{Top}=25^{\circ} \mathrm{C}$)

Symbol	Description	Condition	Min.	Typ.	Max.	Unit
VDD1	Operating voltage range	20MHz at HF-XTAL	2.6	3	5.5	V
VDD2		4MHz at XTAL	2.2	3	5.5	
VDD3		32 kHz at LF-XTAL	2.0	3	5.5	
FHF	HF-XTAL mode freq., VDD=5V	Four oscillator periods			20	MHz
	HF-XTAL mode freq., VDD=3V				20	
FXT	XTAL mode freq., VDD=5V	Four oscillator periods			10	MHz
	XTAL mode freq., VDD=3V				10	
FLF	LF-XTAL mode freq., VDD $=5 \mathrm{~V}$	Four oscillator periods			400	KHz
	LF-XTAL mode freq., VDD $=3 \mathrm{~V}$				400	
Ferc	ERC mode freq., VDD $=5 \mathrm{~V}$	Rext=1Kohm; Cext=3.3pF			12	MHz
	ERC mode freq., VDD=3V				8	
Vih	Input high voltage, VDD=5V	I/O port	2.0			V
		RTCC	4.0			
		RESET	3.3			
	Input high voltage, VDD $=3 \mathrm{~V}$	I/O port	1.5			
		RTCC	2.4			
		RESET	2			
Vil	Input low voltage, VDD=5V	I/O port			1.0	V
		RTCC			1.0	
		RESET			0.4	
	Input low voltage, VDD=3V	I/O port			0.5	
		RTCC			0.5	
		RESET			0.3	
Voh	Output high voltage, VDD=5V	$l o h=-14 \mathrm{~mA}$	4.0			V
	Output high voltage, VDD=3V		1.6			
Vol	Output low voltage, VDD=5V	$\mathrm{lol}=14 \mathrm{~mA}$			0.4	V
	Output low voltage, VDD=3V				0.5	
Ioh	I/O Port Output high current, VDD=5V	Voh $=4.0 \mathrm{~V}$		-19.4		mA
	I/O Port Output high current, VDD=3V	Voh $=2.0 \mathrm{~V}$		-12.2		
lol	I/O Port Output low current, VDD=5V	$\mathrm{Vol}=1.0 \mathrm{~V}$		72		
	I/O Port Output low current, VDD=3V	$\mathrm{Vol}=1.0 \mathrm{~V}$		46		

Symbol	Description	Condition	Min.	Typ.	Max.	Unit
Icol	PB1/IR constant output low current, VDD=5V	$\mathrm{Vol}=1.0 \mathrm{~V}$		48		mA
	PB1/IR constant output low current, VDD $=3 \mathrm{~V}$	$\mathrm{Vol}=1.0 \mathrm{~V}$		45		
	PB1/IR constant output low current, VDD=2.4V	$\mathrm{Vol}=1.0 \mathrm{~V}$		44		
lil	Internal Pull-high current, VDD=5V	Input pin at VSS		-58		uA
	Internal Pull-high current, VDD=3V			-19		
lih	Internal Pull-low current, VDD=5V	Input pin at VDD		38		uA
	Internal Pull-low current, VDD=3V			12		
Isb	Power-down current, VDD $=5 \mathrm{~V}$	Sleep mode, WDT enable		8		uA
		Sleep mode, WDT disable		1		
	Power-down current, VDD=3V	Sleep mode, WDT enable		1.9		
		Sleep mode, WDT disable		1		
lop1	HF-XTAL, VDD=5V, 4 clock Instruction (WDT enable)	20 MHz		4.9		mA
		16 MHz		4.0		
		10MHz		2.7		
	HF-XTAL, VDD=3V, 4 clock Instruction (WDT enable)	20MHz		2.8		mA
		16MHz		2.3		
		10MHz		1.5		
	XTAL, VDD $=5 \mathrm{~V}$, 4 clock Instruction (WDT enable)	8 MHz		2.1		mA
		4 MHz		1.2		
		1 MHz		702		uA
		455KHz		461		
	XTAL, VDD $=3 \mathrm{~V}, 4$ clock Instruction (WDT enable)	8MHz		1.2		mA
		4 MHz		627		uA
		1 MHz		205		
		455 KHz		155		
	LF-XTAL, VDD=5V, 4 clock Instruction (WDT enable)	32.768 KHz		25		uA
	LF-XTAL, VDD=3V, 4 clock Instruction (WDT disable)	32.768 KHz		10		
lop2	IRC mode VDD=5V, 4 clock Instruction (WDT enable)	20 MHz		6.4		mA
		16MHz		5.2		
		8 MHz		2.8		
		4 MHz		1.7		
		2 MHz		1.0		
		1 MHz		635		uA
		455 KHz		412		
		32.768 KHz		51		
	IRC mode, VDD=3V, 4 clock Instruction (WDT enable)	20 MHz		3.7		mA
		16 MHz		3.1		
		8 MHz		1.7		
		4 MHz		1.0		
		2 MHz		570		uA

Symbol	Description	Condition			Min.	Typ.	Max.	Unit
		1MHz				339		
		455 KHz				206		
		32.768 KHz				25		
lop3	ERC mode, VDD=5V, 4 clock Instruction (WDT enable)	Cext	Rext	OSC Freq.				
		3.3p	1K	$\mathrm{F}=12.8 \mathrm{MHz}$		7.5		mA
			3.3K	$\mathrm{F}=7.4 \mathrm{MHz}$		3.6		
			5.1K	$\mathrm{F}=5.5 \mathrm{MHz}$		2.6		
			10K	$\mathrm{F}=3.2 \mathrm{MHz}$		1.5		
			100K	$\mathrm{F}=396 \mathrm{KHz}$		186		uA
		20p	1K	$\mathrm{F}=10 \mathrm{MHz}$		6.5		mA
			3.3K	$\mathrm{F}=4.9 \mathrm{MHz}$		2.7		
			5.1K	$\mathrm{F}=3.4 \mathrm{MHz}$		1.9		
			10K	$\mathrm{F}=1.9 \mathrm{MHz}$		1.0		
			100K	$\mathrm{F}=221 \mathrm{KHz}$		127		UA
		100p	1K	$\mathrm{F}=4.8 \mathrm{MHz}$		4.6		mA
			3.3K	$\mathrm{F}=1.9 \mathrm{MHz}$		1.5		
			5.1K	$\mathrm{F}=1.3 \mathrm{MHz}$		1.0		
			10K	$\mathrm{F}=669 \mathrm{KHz}$		547		uA
			100K	$\mathrm{F}=72 \mathrm{KHz}$		72		
		300p	1K	$\mathrm{F}=2.3 \mathrm{MHz}$		3.5		mA
			3.3K	$\mathrm{F}=845 \mathrm{KHz}$		1.2		
			5.1K	$\mathrm{F}=562 \mathrm{KHz}$		764		uA
			10K	$\mathrm{F}=289 \mathrm{KHz}$		397		
			100K	$\mathrm{F}=30 \mathrm{KHz}$		59		
	ERC mode, VDD=3V, 4 clock Instruction (WDT enable)	3.3p	1K	$\mathrm{F}=8.2 \mathrm{MHz}$		3.5		mA
			3.3K	$\mathrm{F}=6.0 \mathrm{MHz}$		1.9		
			5.1K	$\mathrm{F}=4.8 \mathrm{MHz}$		1.4		
			10K	$\mathrm{F}=3.1 \mathrm{MHz}$		867		uA
			100K	$\mathrm{F}=445 \mathrm{KHz}$		119		
		20p	1K	$\mathrm{F}=6.9 \mathrm{MHz}$		3.3		mA
			3.3K	$\mathrm{F}=4.4 \mathrm{MHz}$		1.5		
			5.1K	$\mathrm{F}=3.4 \mathrm{MHz}$		1.1		
			10K	$\mathrm{F}=2.0 \mathrm{MHz}$		625		uA
			100K	$\mathrm{F}=254 \mathrm{KHz}$		79		
		100p	1K	$\mathrm{F}=4.2 \mathrm{MHz}$		2.7		mA
			3.3K	$\mathrm{F}=1.9 \mathrm{MHz}$		966		uA
			5.1K	$\mathrm{F}=1.4 \mathrm{MHz}$		661		
			10K	$\mathrm{F}=742 \mathrm{KHz}$		354		
			100K	$\mathrm{F}=83 \mathrm{KHz}$		43		
		300p	1K	$\mathrm{F}=2.3 \mathrm{MHz}$		2.2		mA
			3.3K	$\mathrm{F}=926 \mathrm{KHz}$		753		uA
			5.1K	$\mathrm{F}=628 \mathrm{KHz}$		496		
			10K	$\mathrm{F}=330 \mathrm{KHz}$		259		
			100K	$\mathrm{F}=35 \mathrm{KHz}$		35		

6. Package Dimension

6.1 28 Pin Skinny DIP 300 mil

Symbols	Dimension In Millimeters			Dimension In Inches		
	Min	Nom	Max	Min	Nom	Max
A	-	-	4.57	-	-	0.180
A1	0.38	-	-	0.015	-	-
A2	-	3.30	3.56	-	0.130	0.140
B	1.02	-	1.65	0.0040	-	0.065
B1	0.41	-	0.58	0.016	-	0.023
B2	0.71	-	1.12	0.028	-	0.044
C	0.20	0.25	0.33	0.008	0.010	0.013
D	35.13	35.18	35.43	1.383	1.385	1.395
E	7.87	8.31	8.38	0.310	0.327	0.330
E1	7.26	7.32	7.52	0.284	0.288	0.296
e	-	2.54	-	-	0.100	-
L	3.18	-	-	0.125	-	-
eB	8.64	-	9.65	0.340	-	0.380

6.2 28 Pin DIP 600 mil

Symbols	Dimension In Millimeters			Dimension In Inches		
	Min	Nom	Max	Min	Nom	Max
A	-	-	5.59	-	-	0.220
A1	0.38	-	-	0.015	-	-
A2	3.81	3.94	4.06	0.150	0.155	0.160
B	-	1.52	-	-	0.06	-
B1	-	0.46	-	-	0.018	-
D	36.96	37.08	37.34	1.455	1.460	1.470
E	-	15.24	-	-	0.600	-
E1	13.72	13.84	13.97	0.540	0.545	0.550
e	-	2.54	-	-	0.100	-
L	3.18	-	-	0.125	-	-
eB	16.00	16.51	17.02	0.630	0.650	0.670

6.3 28 Pin SOP 300 mil

Symbols	Dimension In Millimeters			Dimension In Inches		
	Min	Nom	Max	Min	Nom	Max
A	-	2.488	2.743	-	0.098	0.108
A1	0.152	-	-	0.006	-	-
A2	2.21	2.336	2.464	0.087	0.091	0.097
B	0.305	0.406	0.508	0.012	0.016	0.020
C	0.204	0.254	0.304	0.008	0.010	0.012
D	17.78	17.91	18.42	0.700	0.705	0.725
E	7.366	7.493	7.62	0.290	0.295	0.300
e	1.219	1.270	1.321	0.048	0.050	0.052
eB	10.26	10.42	10.57	0.404	0.410	0.416
L	0.635	-	-	0.025	-	-
θ	0°	4°	8^{0}	0°	4°	8°
D1	0.356	0.508	-	0.014	0.020	-

6.4 28 Pin SSOP 209 mil

Package Group: Plastic SSOP													
Symbol	Millimeters								Max	Notes	Min	Max	Notes
	Min	Max	Nes										
	0°	8°		0°	8°								
A	1.730	1.990		0.068	0.078								
A1	0.050	0.210		0.002	0.008								
B	0.250	0.380		0.010	0.015								
C	0.130	0.220		0.005	0.009								
D	10.070	10.330		0.396	0.407								
E	5.200	5.380		0.205	0.212								
e	0.650	0.650	Reference	0.026	0.026	Reference							
H	7.650	7.900		0.301	0.311								
L	0.550	0.950		0.022	0.037								
N	28	28		28	28								
CP	-	0.102		-	0.004								

7. Ordering Information

P/N	Package Type	Pin Count	Package Size
AM8EB057A	Die	28	-
AM8EB057AP	Skinny DIP	28	300 mil
AM8EB057AW	DIP	28	600 mil
AM8EB057AS	SOP	28	300 mil
AM8EB057AD	SSOP	28	209 mil

[^0]: - R10~R1F, R20~R3F

 R10 ~R1F, R20~R3F (Bank 0 ~Bank3) are general storage registers.

[^1]: * Bit 0 (/PDAO) : = 0, Enable the internal pull-down of PA0 pin.
 $=1$, Disable the internal pull-down of PAO pin.

[^2]: Cycles: 1

