TM58PC20

Data Sheet

Tenx reserves the right to change or discontinue this product without notice． tenx technology inc．

1. Feature

- ROM: $2 \mathrm{~K} \times 14$ bits
- RAM: 72×8 bits
- STACK: 2 Levels
- Advance mode and General mode
- I/O ports: 20 I/O PAD
- Timer/counter: 8bits x1 (TMR0)
- Prescaler: 8 Bits
- Watchdog Timer: On chip WDT based on internal RC oscillator. The shortest period is 20 mS ; user can extend the WDT overflow period to 2.56 S by using prescaler.
- Power-On Reset \& Watchdog timer overflow Reset
- Reset Timer: $20 \mathrm{mS}(5 \mathrm{~V})$
- One internal RC Oscillator
- Four external Oscillate modes: RC, LP Crystal, NT Crystal and HS Crystal.
- Operation Voltage: $2.2 \mathrm{~V} \sim 5.5 \mathrm{~V}$
- Instruction set: 78
- Wake-up: Port B $\left(\mathrm{PB}_{7} \sim \mathrm{~PB}_{0}\right)$
- Reset vector: 7FFH

2. Pin Definition \& Pad Assignment

RTCC	1	28	RESETB
VDD	2	27	OSC_{1}
NC	3	26	OSC_{2}
VSS	4	25	PC_{7}
NC	5	24	PC6
PA 0	6	23	PC_{5}
PA1	7	22	PC_{4}
PA2	8	21	PC_{3}
PA3	9	20	PC_{2}
PBo	10	19	PC_{1}
PB1	11	18	PCo
PB_{2}	12	17	PB_{7}
PB_{3}	13	16	PB6
PB4	14	15	PB5

Package Types: SDIP(TM58PC20SD28C) ,
DIP(TM58PC20D28C) ,
SOP(TM58PC20S28C)
SSOP(TM58PC20SS28C)

PC_{4}	1	20
PC 5	2	19
PC6	3	18
PC_{7}	4	17
OSC2	5	16
OSC1	6	15
RESETB	7	14
VDD	8	13
VSS	9	12
PAo	10	11

Package Types: SDIP(TM58PC20SD20C) ,
SOP(TM58PC20S20C)

PC 5	1	18	PB_{7}
PC6	2	17	PB6
PC_{7}	3	16	PB 5
OSC2	4	15	PB 4
OSC1	5	14	PB3
RESETB	6	13	PB 2
VDD	7	12	PB1
VSS	8	11	PBo
PAo	9	10	PA_{1}

PIN description

Pin name	$1 / 0$	Description
RTCC	1	External clock input to TMR0 counter
PA_{3-0}	I/O	I/O port
PB_{7-0}	I/O	I/O port \& wake-up (input mode)
PC_{7-0}	I/O	I/O port
RESETB	1	System reset signal input
OSC_{1}	1	Oscillator input
OSC_{2}	0	Oscillator output
VDD	P	Power input
VSS	P	Ground input

I: Input; O: Output; I/O: Bi-direction; P: Power

3. Control Register

Name	Addr	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
CONFIG (Instruction)					TYPE	CPT	WDTE	FOSC1	FOSC0
SELECT				SUR0	EDGE0	PSA	PS2	PS1	PS0
IAR	$\$ 00$		A6	A5	A4	A3	A2	A1	A0
TMR0	$\$ 01$	D7	D6	D5	D4	D3	D2	D1	D0
PC	$\$ 02$	D7	D6	D5	D4	D3	D2	D1	D0
STATUS	$\$ 03$		SA1	SA0	$\overline{T O}$	$\overline{\text { PD }}$	Z	DC	C
BSR	$\$ 04$		D6	D5	D4	D3	D2	D1	D0
I/O Port $_{A}$	$\$ 05$					PA3	PA2	PA1	PA $_{0}$
I/O Port $_{B}$	$\$ 06$	PB7	PB6	PB5	PB4	PB3	PB2	PB1	PB0
I/O Port $_{C}$	$\$ 07$	PC7	PC6	PB5	PC4	PC3	PC2	PC1	PC0

4. System Block Diagram

5. Memory Map

TM58PC20 memory is organized into program memory and data memory.

5-1. Program memory

There are only 512 words of the same page that can be directly addressed. Extra program memory can be addressed by setting bit 6~5 of status register. The sequence of instructions is controlled via the program counter (PC), which automatically increases 1. However, the sequence can be changed by skip, call and goto instructions or by moving data to the PC.

TM58PC20 has an 11-bits program counter capable of accessing 2 K spaces. If accessing address has over 2 K , then the address will map to physical 2 K memories, i.e. $2 \mathrm{~K}+\mathrm{M}$ will be mapped to M. A NOP at the reset vector location will cause a restart at address 000h. A simple map to induce illustrate ROM organization is shown in figures 5-1.

000 H Page 0
1 FFH
:---
3 FFH

Figure 5-1: The ROM Organization

5-2. Configuration memory

The configuration word is located 800 H that contains OSC selection, WDT enable, code protection and type selection.

Bit	Symbol	Description			
1~0	$\mathrm{FOSC}_{1} \sim \mathrm{FOSC}_{0}$	Bit1	Bito	OSC Type	Resonance Frequency
		0	0	LP (low speed)	32~200K hz
		0	1	$\mathrm{NT}_{\text {(Normal speed) }}$	200K~10M hz
		1	0	HS (high speed)	10~20M hz
		1	1	RC	32K ~ 6M hz
2	WDTE	WDTE: Watchdog enable/disable control 1: WDT enable 0: WDT disable			
3	CPT	CPT: Code Protection bit 1: OFF 0: ON			
4	TYPE	TYPE: Select operating mode 1: Advanced mode 0 : General mode			

Figure 5-2: The Configuration Word

5-3. Data memory

Data memory is composed of special function registers and general-purpose ram.
TM58PC20 has 72 general-purpose registers that accessed by using a bank select scheme. The special function registers include the program counter (PC), the timer (TMR0) register, the status register, the bank select register, and the I/O port registers. Furthermore, TM58PC20 has 3 auxiliary registers that include indirect addressing register (IAR), the select register (Select) and the I/O direction register (IODIR). The register map of TM58PC20 is shown in figure 5-3.

	Bank0	Bank1	Bank2	Bank3
00h	IAR	Map back to address in Bank0		
01h	TMR0			
02h	PC			
03h	STATUS			
04h	BSR			
05h	PORTA			
06h	PORTB			
07h	PORTC			
08h~0fh	General Purpose Register			
$8+16 * 4=72$	General Purpose Register 10-1F	General Purpose Register 30-3F	General Purpose Register 50-5F	General Purpose Register 70-7F

Figure 5-3: The Register Map of TM58PC20A

Preliminary

5-3-1. The IAR (indirect addressing register) is not a physical register and is used to assist BSR with indirect addressing. Any instruction attempts to access IAR actually mapping to another address that is pointed by BSR. Since IAR is not a material circuit, user reads IAR itself ($\mathrm{BSR}=00 \mathrm{H}$) will always return 00h at data bus. Writing to IAR itself will like NOP.
5-3-2. Select register is used to control WDT and TMR0. It has not assigned a specific address in data memory and can only set control bits by select instruction, i.e. it is write-only register. The context of accumulator will be sent to the select register by executing the select instruction. If select register has never set by program, its default value is 3 FH. We drew Figure $5-4$ to explain how to set select register.

Bit	Symbol	Description				
2~0	PS2~PS0	PS2	PS1	PS0	TMR0 rate	WDT rate
		0	0	0	1:2	1:1
		0	0	1	1:4	1:2
		0	1	0	1:8	1:4
		0	1	1	1:16	1:8
		1	0	0	1:32	1:16
		1	0	1	1:64	1:32
		1	1	0	1:128	1:64
		1	1	1	1:256	1:128
3	PSA	PSA: Prescaler assignment bit 1: Prescaler assigned to WDT 0: Prescaler assigned to TMR0				
4	EDGE0	1: increment when $\mathrm{H} \rightarrow \mathrm{L}$ transition on external clock 0 : increment when $\mathrm{L} \rightarrow \mathrm{H}$ transition on external clock				
5	SUR0	SURO: TMRO clock source bit 1: RTCC input 0: (System clock)/4 or internal instruction cycle				

Figure 5-4: Select Register

5-3-3. The I/O Direction control register is similar to the Select register that is write-only register. To set an I/O port pin as input, the corresponding direction control bit must be high. Similarly, the zero represents output. Any direction control bit can be programmed individually as input or output by using IODIR instruction. If the register is not programmed, than all I/O ports always keep input mode.

- PC (program counter) is 11-bit wide binary counter and increases itself for every instruction cycle, except the following conditions.

1. call, goto, Igoto and Icall: the label will move to PC
2. retla and ret: the top value of stack will pop to PC

Incrementing PC when it changes to the next higher page. It should be noted that the page select bits in the status register would not be changed synchronously. The following Goto, Call, or MOVAM 02H will return to the previous page, unless the page select bits have been updated in program. In order to reduce the complexity of programming, TM58PC20 provides 2 instructions to facilitate subroutine call and branch handling which are LCALL and LGOTO. LCALL and LGOTO can address to
anywhere in the ROM, but the page select bits are unnecessary. The attached operands of CALL and GOTO are 8 -bit and 9 -bit respectively, and so need extra bits (page select bits) to address whole memory. However, LCALL and LGOTO have 11-bit wide operands that are easy to address the total ROM space.

- TMRO is 8 -bit wide binary counter/timer. This register increases by an external signal edge applied to RTCC pin, or by internal instruction cycle. It has the following features.
A. Readable and writeable
B. Synchronize with 2 internal clocks
C. Can use programmable prescaler by setting select register

The other details will be described in follow-up chapter.
Status register contains page select bits, time out bit, power down bit and the status of ALU. Please note that $\overline{T O}$ and $\overline{P D}$ are controlled by hardware and unchangeable by program.

Figure 5-5: Status Register

Note1: A SUB instruction is executed by adding the 2's complement of the subtrahend, so $C=1$ represents positive result. The Figure $5-5-1$ shows the relation between C-bit and borrow.

B0H-50H										50H-B0H									
	C	B7	B6	B5	B4	B3	B2	B1	B0		C	B7	B6	B5	B4	B3	B2	B1	B0
		1	0	1	1	0	0	0	0			0	1	0	1	0	0	0	0
$+$		1	0	1	1	0	0	0	0	+		0	1	0	1	0	0	0	0
=	1	0	1	1	0	0	0	0	0	=	0	1	0	1	0	0	0	0	0

Figure 5-5-1
Note2: The $\overline{T O}$ and $\overline{P D}$ bits are active low that can be used to determine different causes of reset. The Figure 5-5-2 illustrates the value of $\overline{T O}$ and $\overline{P D}$ after the relative reset events.

$\overline{T O}$	$\overline{P D}$	Reset Event
0	0	WDT time out from sleep mode
0	1	WDT time out from normal mode
1	0	RESETB reset from sleep
1	1	Power on reset
Unchanged	Unchanged	RESETB reset from normal

Figure 5-5-2

- BSR (bank select register) is associated with IAR to indirectly access the data memory. The direct addressing must rely on BSR to access bank1 ~ bank3, because there are only 5 -bit wide address operands in general mode. The bit 6~5 of BSR are used to select the specifiable memory bank. These address regions $20 \mathrm{H} \sim 2 \mathrm{FH}, 40 \mathrm{H} \sim 4 \mathrm{FH}$ and $60 \mathrm{H} \sim 6 \mathrm{FH}$ are not accessible, these address will be mapped to 00H~0FH (Banko). The addressing map is shown in Figure 5-6.

Figure 5-6: The Direct and Indirect Addressing Map

- Ports A~C are programmable I/O ports. Please note that read I/O instruction always read the I/O pin even though the pin is output mode. On reset, all I/O pins were set as input mode until IODIR has been changed.

6. Functional Description

6-1. TMR0 and Watchdog timer

Figure 6-1 shows the block diagram of the TMRO/WDT prescaler. As shown in the figure, the prescaler register can be a pre-scaler for TMRO or be a post-scaler for WDT.

Figure 6-1: Block Diagram of the TMR0/WDT Prescaler
The TMRO is an 8-bit timer/counter. The clock source of TMRO can come from the instruction clock or the external clock.
A. To select the instruction clock, the SURo bit of the select register should be clear. When no prescaler is used, TMR0 will increase by 1 at every instruction cycle.
B. To select the external clock, the SURo bit of the select register should be set. In this mode, TMRO relies on the EDGE 0 bit to determine that TMRO is increased by 1 at every falling or rising edge. When an external clock is used for TMRO, a problem must be noted that the external clock synchronizes with internal clock. TM58PC20 synchronizes external clock by sampling internal clock at T2 and T4. If external pulse is smaller than 2 internal cycles, the pulse maybe ignored. Therefore, the external clock must keep stable state (high or low) for at least 2 internal cycles.

The WDT counter is an 8-bit binary counter. The clock source of WDT is provided by an independent on-chip RC oscillator that does not need any external clock. Therefore, the WDT will keep counting even if the chip has slept already. A WDT time-out will restart system and set the time-out flag bit (bit4 of status register) as " 0 ". The WDT time-out period vary with temperature, power voltage and process. This period can be improved via the prescaler. The maximum division ratio can up to $1: 128$ by setting PS2~PS0 as "111".

The prescaler can be assigned to either the TMRO or the WDT via the PSA bit. Note that either WDT or TMRO can employ the prescaler simultaneously. The following examples (2-3) must be executed when changing PSA form TMR0 to the WDT and form WDT to the TMRO respectively. These examples can avoid an unintended time-out reset.

Clrwdt		
Clrm	TMR0	;clear prescaler \& TMRO
Movla	B'00xx1111'	
Select		
Clrwdt		
Movla desired	B'00xx1xxx'	;set prescaler to
Select	;WDT rate	

Example-2: Change prescaler form TMR0 to WDT

Clrwdt	;clear prescaler \& WDT
Movla	B'00xx0xxx'
Select	
with	;set prescaler to TMR0
	;new rate

Example-3: Change prescaler form WDT to TMR0

When the prescaler is assigned to WDT, "CLRWDT" and "SLEEP" instruction will clear the prescaler and the WDT. When the prescaler is assigned to TMR0, the prescaler will be cleared by any instruction that writes to TMRO.

6-2. Reset

TM58PC20 may be reset by one of the following conditions:
(1) Power-on
(2) RESETB pin input a negative pulse
(3) WDT timer out reset (if enabled).

Figure 6-2: Scheme of the Reset Controller
As shown in the figure 6-2, three reset conditions are listed. In general, we call the first one reset-cases as cold reset. The cold reset time may be too short for slow crystals and RC oscillators that require much longer than setup time ${ }^{\text {(note) }}$ to oscillate.

Note: The setup time is approximately 20 mS that will affect due to power voltage, process and temperature variations.

The last two cases are called warm reset. The different reset events will affect registers and ram. The $\overline{T O}$ and $\overline{P D}$ bits can be used to determine the type of reset. These relation are listed in figure 6-3.

Address	Name	Cold Reset	Warm Reset
N/A	Accumulator	xxxx xxxx	pppp pppp
N/A	IODIR	11111111	11111111
N/A	Select	--11 1111	--11 1111
00h	IAR	---------	---- ----
01h	TMR0	xxxx xxxx	pppp pppp
02h	PC	11111111111	11111111111
03h	STATUS	0001 1xxx	000? ? ppp ${ }^{1}$
04h	BSR	1xxx xxxx	1ppp pppp
05h	PORTA	0000 xxxx	0000 pppp
06h	PORTB	xxxx xxxx	pppp pppp
07h	PORTC	$x \mathrm{xxx} \times \mathrm{xxx}$	pppp pppp
	General Purpose RAM	Xxxx xxxx	Pppp pppp

Figure 6-3: RESET CONDITIONS
"X": unknown; "P": previous data; "?": value depends on condition;

6-3. ADVANCED MODE

In advanced mode, we provide wake up function. Chip can be wake up from Sleep mode when the logic of the input pin of the Port B is changed. So we need to read the logic of the input pin before sleep. In advanced mode, the use of a pull-up resistor for the input pin of Port B. You can set the I/O direction of Port B by "IODIR" instruction. If the chip waked up from sleep state, the next instruction of SLEEP will be executed.

Wake up

movia iodir	Ofh 06h ;; set i/o direction of port b
movm sleep call	06h,a ;; read the voltage of the input pin before sleep ;; only portb3210 cab be wakeup delay 20 ms ;;this instruction will be execrated after wake up

Example 1: Wake up
The denounce time is the interval that must pass before a second pressing of a key is accepted. User can set this interval with the delay routine (See Example 1).

Key bounce

```
After_wakeup
int_nt1 ;; filter out key begin bounce
    btmsc rb,0
    Igoto int_nt1
int_loop1 ;; filter out key end bounce
    call delay ;; worse case 30 ms
    btmss rb,0
    Igoto int_loop1
    call delay_routine ;; such as 30 ms
    btmss rb,0
    Igoto int_loop1
```

Example 2: Key_Debounce

7. Instruction Set

Mnemonic Operands	Instruction Code (Advance)	Cycles	Status Affected	OP-code
ADDAM M, m	(M) + (acc) \rightarrow (M)	1	C, DC, Z	100101 1MMM MMMM
ADDAM M, a	$(\mathrm{M})+(\mathrm{acc}) \rightarrow(\mathrm{acc})$	1	C, DC, Z	100101 OMMM MMMM
ANDAM M, m	$(\mathrm{M}) \cdot(\mathrm{acc}) \rightarrow(\mathrm{M})$	1	Z	100100 1MMM MMMM
ANDAM M, a	$(\mathrm{M}) \cdot(\mathrm{acc}) \rightarrow(\mathrm{acc})$	1	Z	100100 OMMM MMMM
ANDLA I	Literal - (acc) \rightarrow (acc)	1	Z	111001 iiiii iiii
BCM M, b0	Clear bit0 of (M)	1	None	001100 OMMM MMMM
BCM M, b1	Clear bit1 of (M)	1	None	001100 1MMM MMMM
BCM M, b2	Clear bit2 of (M)	1	None	001101 OMMM MMMM
BCM M, b3	Clear bit3 of (M)	1	None	001101 1MMM MMMM
BCM M, b4	Clear bit4 of (M)	1	None	001110 OMMM MMMM
BCM M, b5	Clear bit5 of (M)	1	None	001110 1MMM MMMM
BCM M, b6	Clear bit6 of (M)	1	None	001111 OMMM MMMM
BCM M, b7	Clear bit7 of (M)	1	None	001111 1MMM MMMM
BSM M, b0	Set bit0 of (M)	1	None	001000 OMMM MMMM
BSM M, b1	Set bit1 of (M)	1	None	001000 1MMM MMMM
BSM M, b2	Set bit2 of (M)	1	None	001001 OMMM MMMM
BSM M, b3	Set bit3 of (M)	1	None	001001 1MMM MMMM
BSM M, b4	Set bit4 of (M)	1	None	001010 OMMM MMMM
BSM M, b5	Set bit5 of (M)	1	None	001010 1MMM MMMM
BSM M, b6	Set bit6 of (M)	1	None	001011 OMMM MMMM
BSM M, b7	Set bit7 of (M)	1	None	001011 1MMM MMMM
BTMSC M, b0	If bit0 of $(M)=0$, skip next instruction	1 + (skip)	None	000100 OMMM MMMM
BTMSC M, b1	If bit1 of $(M)=0$, skip next instruction	1 + (skip)	None	000100 1MMM MMMM
BTMSC M, b2	If bit2 of $(M)=0$, skip next instruction	1 + (skip)	None	000101 OMMM MMMM
BTMSC M, b3	If bit3 of $(M)=0$, skip next instruction	1 + (skip)	None	000101 1MMM MMMM
BTMSC M, b4	If bit4 of $(M)=0$, skip next instruction	1 + (skip)	None	000110 OMMM MMMM
BTMSC M, b5	If bit5 of $(\mathrm{M})=0$, skip next instruction	1 + (skip)	None	000110 1MMM MMMM
BTMSC M, b6	If bit6 of $(M)=0$, skip next instruction	1 + (skip)	None	000111 OMMM MMMM
BTMSC M, b7	If bit7 of $(M)=0$, skip next instruction	1 + (skip)	None	000111 1MMM MMMM
BTMSS M, b0	If bit0 of $(M)=1$, skip next instruction	1 + (skip)	None	000000 OMMM MMMM

Mnemonic Operands	Instruction Code (Advance)	Cycles	Status Affected	OP-code
BTMSS M, b1	If bit1 of (M) = 1 , skip next instruction	1 + (skip)	None	000000 1MMM MMMM
BTMSS M, b2	If bit2 of $(M)=1$, skip next instruction	1 + (skip)	None	000001 OMMM MMMM
BTMSS M, b3	If bit3 of $(M)=1$, skip next instruction	1 + (skip)	None	000001 1MMM MMMM
BTMSS M, b4	If bit4 of $(M)=1$, skip next instruction	1 + (skip)	None	000010 OMMM MMMM
BTMSS M, b5	If bit5 of $(M)=1$, skip next instruction	1 + (skip)	None	000010 1MMM MMMM
BTMSS M, b6	If bit6 of $(M)=1$, skip next instruction	1 + (skip)	None	000011 OMMM MMMM
BTMSS M, b7	If bit7 of $(M)=1$, skip next instruction	1 + (skip)	None	000011 1MMM MMMM
CALLI	Call subroutine	2	None	110110 iiiii iiii
CLRA	Clear accumulator	1	Z	10000100000000
CLRM M	Clear memory M	1	Z	100001 1MMM MMMM
CLRWDT	Clear watch-dog register	1	TO, PO	10000000000001
COMM M, m	$\sim(\mathrm{M}) \rightarrow(\mathrm{M})$	1	Z	100010 1MMM MMMM
COMM M, a	$\sim(\mathrm{M}) \rightarrow$ (acc)	1	Z	100010 OMMM MMMM
DECM M, m	Decrement M to M	1	Z	100110 1MMM MMMM
DECM M, a	$(\mathrm{M})-1 \rightarrow(\mathrm{acc})$	1	Z	100110 OMMM MMMM
DECMSZ M, m	$(\mathrm{M})-1 \rightarrow(\mathrm{M})$, skip if $(\mathrm{M})=0$	1 + (skip)	None	100111 1MMM MMMM
DECMSZ M, a	$(\mathrm{M})-1 \rightarrow(\mathrm{acc})$, skip if $(\mathrm{M})=0$	1 + (skip)	None	100111 OMMM MMMM
GOTO I	Goto branch	2	None	11 101i iiii iiii
INCM M, m	$(\mathrm{M})+1 \rightarrow(\mathrm{M})$	1	Z	101000 1MMM MMMM
INCM M, a	$(\mathrm{M})+1 \rightarrow(\mathrm{acc})$	1	Z	101000 OMMM MMMM
INCMSZ M, m	$(\mathrm{M})+1 \rightarrow(\mathrm{M})$, skip if $(\mathrm{M})=0$	$1+$ (skip)	None	101001 1MMM MMMM
INCMSZ M, a	$(\mathrm{M})+1 \rightarrow(\mathrm{acc})$, skip if $(\mathrm{M})=0$	1 + (skip)	None	101001 OMMM MMMM
IODIR M	Set i/o direction	1	None	1000000000 OMMM
IORAM M, m	(M) ior (acc) \rightarrow (M)	1	Z	101111 1MMM MMMM
IORAM M, a	(M) ior (acc) \rightarrow (acc)	1	Z	101111 OMMM MMMM
IORLAI	Literal ior (acc) \rightarrow (acc)	1	Z	110011 iiiii iiii
LCALL I	Call subroutine. However, LCALL can addressing 2 K address	2	None	01 Oiii iiii iiii
LGOTO I	Go branch to any address	2	None	01 1iii iiii iiii

Mnemonic Operands	Instruction Code (Advance)	Cycles	Status Affected	OP-code
MOVAM m	Move data form acc to memory	1	None	100000 1MMM MMMM
MOVLA I	Move literal to accumulator	1	None	110001 iiii iiii
MOVM M, m	$(\mathrm{M}) \rightarrow(\mathrm{M})$	1	Z	100011 1MMM MMMM
MOVM M, a	$(\mathrm{M}) \rightarrow$ (acc)	1	Z	100011 OMMM MMMM
NOP	No operation	1	None	10000000000000
RET	Return	2	None	11111101111111
RETLA I	Return and move literal to accumulator	2	None	111100 iiii iiii
RLM M, m	Rotate left from m to itself	1	C	101100 1MMM MMMM
RLM M, a	Rotate left from m to acc	1	C	101100 OMMM MMMM
RRM M, m	Rotate right from m to itself	1	C	101110 1MMM MMMM
RRM M, a	Rotate right from m to acc	1	C	101110 OMMM MMMM
SELECT	Set select register	1	None	10000000000010
SLEEP	Enter sleep (saving) mode	1	TO, PO	10000000000011
SUBAM M, m	(M)-(acc) \rightarrow (M)	1	C, DC, Z	101010 1MMM MMMM
SUBAM M, a	(M) -(acc) \rightarrow (acc)	1	C, DC, Z	101010 OMMM MMMM
SWAPM M, m	Swap data from m to itself	1	None	101101 1MMM MMMM
SWAPM M, a	Swap data from m to acc	1	None	101101 OMMM MMMM
XORAM M, m	$(\mathrm{M}) \operatorname{xor}(\mathrm{acc}) \rightarrow(\mathrm{M})$	1	Z	101011 1MMM MMMM
XORAM M, a	$(\mathrm{M}) \mathrm{xor}(\mathrm{acc}) \rightarrow(\mathrm{acc})$	1	Z	101011 OMMM MMMM
XORLA I	Literal $\mathrm{xor}(\mathrm{acc}) \rightarrow(\mathrm{acc})$	1	Z	111000 iiii iiii

8. Electrical Characteristics

8-1. Absolute Maximum Ratings

Supply Voltage Vss- 0.3 V to Vss +5.5 V Storage Temperature $\ldots-50^{\circ} \mathrm{C}$ to $125^{\circ} \mathrm{C}$
Input Voltage Vss-0.3V to VDD+0.3V Operating Temperature... $0^{\circ} \mathrm{C}$ to $70^{\circ} \mathrm{C}$

8-2. DC Characteristics

Symbol	Parameter	Test Conditions		Min.	Type	Max.	Unit
		VDD	Conditions				
VDD	Operating Voltage	---		2.2		5.5	V
VIH	Input High Voltage	5 V	I/O Port	2		VDD	V
VIL	Input Low Voltage	5 V	I/O Port			0.8	V
IDD1	Standby Current	5 V	WDT disable		1		uA
			WDT enable		5		
		3V	WDT disable		1		
			WDT enable		2		
IIL	Input Leakage Current	5 V	Vin=VDD, VSS		1		uA
		3 V	Vin=VDD, VSS		1		
IOH	I/O Port Driving Current	5 V	Voh=4.5V		9		mA
			Voh=4V		16		
			Voh=3.5V		22		
		3V	Voh=2.7V		4		
			Voh=2.1V		8		
			Voh $=1.5 \mathrm{~V}$		12		
IOL	I/O Port Sink Current	5 V	$\mathrm{Vol}=0.5 \mathrm{~V}$		3		mA
			Vol=01V		10		
			$\mathrm{Vol}=1.5 \mathrm{~V}$		17		
		3 V	$\mathrm{Vol}=0.3 \mathrm{~V}$		1		
			$\mathrm{Vol}=0.9 \mathrm{~V}$		8		
			Vol=1.5V		21		
R	Pull up resistance	5 V	Port B input only		110		$\mathrm{K} \Omega$
		3V	Port B input only		290		

8-3. AC Characteristics

Symbol	Parameter	Test Conditions		Min	Type	Max	Unit
		VDD	Conditions				
fsys1	System Clock	5 V	LP Crystal mode	32		200	Khz
		3V		32		200	
fsys1	System Clock	5 V	NT Crystal mode	0.2		10	Mhz
		3V		0.2		10	
fsys3	System Clock	5 V	HS Crystal mode	10		20	Mhz
		3 V					
fsys4	System Clock	5 V	RC mode			6	Mhz
		3V				6	
Twdt	Watchdog Timer	$\begin{aligned} & 5 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$			20		mS
					30		
Trht	Reset Hold Time	$\begin{aligned} & 5 \mathrm{~V} \\ & 3 \mathrm{~V} \end{aligned}$			20		mS
					30		

8-4. External RC Tables

RC frequency form ($5 \mathrm{~V}, 25^{\circ} \mathrm{C}$)

Cent	Rest	1	2	3	4	5	6	7	8	9
20pf	3.3k	3.94 M	3.93 M	3.92M	3.92M	3.89M	3.92M	3.96M	3.90 M	3.92M
	5.1k	3.02M	3.02M	3.01M	3.01M	2.99M	3.01 M	3.03M	3.01M	3.02M
	10k	1.87M	1.87M	1.86M	1.86M	1.85M	1.86M	1.87M	1.86M	1.86M
	100k	234K	234K	233K	232K	232K	232K	232K	232K	232K
100pf	3.3k	1.58M	1.58M	1.58M	1.57M	1.57M	1.57 M	1.58M	1.57M	1.58M
	5.1k	1.09M	1.09M	1.09M	1.08M	1.08M	1.09M	1.09M	1.09M	1.09M
	10k	613K	611K	611K	606K	608K	609K	613K	610K	610K
	100k	66K								
300pf	3.3k	763K	763K	762K	757K	757K	762K	764K	763K	362K
	5.1k	511K	510K	510K	507K	506K	508K	509K	510K	508K
	10k	276K	276K	275K	274K	274K	275K	277K	275K	274K
	100k	28K								

RC frequency form $\left(3 \mathrm{~V}, 25^{\circ} \mathrm{C}\right)$

Cent	Rest	1	2	3	4	5	6	7	8	9
20pf	3.3k	2.96M	2.94M	2.92M	2.94M	2.92M	3.01 M	3.05M	3.00 M	3.00M
	5.1k	2.48M	2.48 M	2.48M	2.51M	2.51M	2.50M	2.54M	2.51 M	2.52 M
	10k	1.76M	1.76M	1.75M	1.77M	1.76M	1.76M	1.78M	1.76M	1.78 M
	100k	278K	278K	276K	275K	274K	274K	273K	277K	278K
100pf	3.3k	1.52M	1.52 M	1.51M	1.53M	1.51 M	15.4M	1.54M	1.52 K	1.53M
	5.1k	1.13M	1.14M							
	10k	684K	686K	680K	681K	682K	682K	680K	684K	80K
	100k	82K	82K	81K	81K	81K	81K	80K	81K	821K
300pf	3.3k	825K	825K	820K	820K	821K	821K	821K	820K	574K
	5.1k	577K	574K	573K	574K	570K	573K	572K	574K	322K
	10k	325K	324K	323K	322K	321K	321K	321K	323K	322K
	100k	35K	35K	35K	35K	35K	35K	34K	34K	35K

