TM59PA40

User＇s Manual

tenx technology，inc．

Contents

Chapter 1 Overview 2
1.1 Feature 2
1.2 Clock Scheme and Instruction Cycle 5
1.3 Addressing Mode. 5
1.4 ALU and Working Register (W) 6
1.5 Status Register (STAT) 6
1.6 Interrupt 7
1.7 Reset 7
1.8 Power Down Mode 8
1.9 System Config Register 8
1.10 Instruction Set 9
Chapter 2 Control Register 20
Chapter 3 Timer 37
Chapter 4 PWM 0 40
Chapter 5 PWM 1 42
Chapter 6 Analog-Digital Converter 44
Chapter 7 I/O Ports 46
Chapter 8 Buzzer Out 50
Chapter 9 Electrical Characteristics 52
Chapter 10 Packaging Information 55
10.1 20-DIP Package Dimension 55
10.2 20-SOP Package Dimension 56
10.3 20-SSOP Package Dimension 57
10.4 16-DIP Package Dimension 58
10.5 16-SOP Package Dimension 59
10.6 16-SSOP Package Dimension 60

Chapter 1 Overview

1.1 FEATURE

1. Program Memory: $4 \mathrm{~K} \times 14$ bits OTP ROM
2. RAM: 192×8 bits
3. STACK: 6 Levels
4. I/O ports: Three I/O ports (Max 18 pins) and Bit programmable ports
5. Timer/counter: One 8-bit timer/counter with time interval modes
6. Watchdog Timer: On chip WDT based on System oscillator
7. Power-On Reset \& Watchdog timer overflow Reset \& Low Voltage reset
8. Oscillation Frequency:

- 1 MHz to 12 MHz external crystal oscillator
- Internal RC: 2.9 MHz (typ.), 480 KHz (typ.) in VDD $=5 \mathrm{~V}$
- External RC

9. High-speed PWM:

- 8-bit PWM 1-ch, 6-bit base + 2-bit extension (Max: 187 kHz)
- 10-bit PWM 1-ch, 8-bit base + 2-bit extension (Max: 47 kHz)

10. Operation Voltage: LVR to 5.5 V
11. Instruction set: 35 Instructions
12. Execution Time: 167 ns at $12 \mathrm{MHz} \mathrm{f}_{\text {OSC }}$
13. A/D Converter: 10 -bit conversion resolution with 10 -ch analog input pins (MAX)
14. Interrupts: 5 interrupt sources with one vector with one interrupt level
15. Buzzer Out: Frequency Selectable Buzzer Output
16. System Config Option: LVR Level Selection and Clock Source Selection
17. Reset vector: 000 H
18. Interrupt vector: 001 H
19. Power Down mode
20. Package Types:

- 20-SOP, SSOP, DIP
- 16-SOP, SSOP, DIP

<Figure 1-1. System Block Diagram>

<Figure 1-2. Pin Assignment Diagram _ Package Types: 20-Pin SOP/DIP/SSOP>

<Figure 1-3. Pin Assignment Diagram _ Package Types: 16-Pin SOP/DIP/SSOP>

Name	In/Out	Pin Description	Shared Function
PA.0-PA.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull output. Pull-up resistors are assignable by software. PortA pins can also be used as A/D converter input, PWM output or external interrupt input.	ADC0-ADC7 INT0/INT1 PWM0/PWM1
PB.0-PB.1	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull, open-drain output. Pull-up resistors or pull- down resistors are assignable by software.	XIN, X

<Table 1-1. PIN Description> < I: Input; O: Output; I/O: Bi-direction; P: Power >

1.2 Clock Scheme and Instruction Cycle

The clock input $\left(\mathrm{X}_{\text {IN }}\right)$ is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle.

< Figure 1-4. Clock/Instruction cycle and pipeline >
Branch instructions take two cycle since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being feched and then executed.

1.3 Addressing Mode

The Programming Counter is 12 -bit wide capable of addressing a $4 \mathrm{~K} \times 14$ program ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 12 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[11:8] keeps unchanged. The STACK is 12-bit wide and 6 -level in depth. The CALL instruction and Hardware interrupt will push STACK level in order, While the RET/RETI/RETLW instruction pops the STACK level in order.

The data memory is partitioned into two banks, which contain the General Purpose Data Memory and the Special Function Registers (SFR). STATUS. 4 is the bank select bits. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank ($00 \mathrm{~h}-1 \mathrm{Fh}$) are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. SFR area is mirrored in all banks for code reduction and quicker access. The first half of RAM ($00 \mathrm{~h}-3 \mathrm{Fh}$) is bit-addressable.

Data memory can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). Reading INDF itself indirectly (FSR=0) will produce 00h. Writing to the INDF register indirectly results in a no-operation.

Program Memory	
0000	Reset Vector
	Interrupt Vector
OFFF	

Data Memory		
00	Registers, STATUS.4=0/1 Bit addressable	
1F	RAM, STATUS.4=1 20	
7F	RAM, STATUS.4=0 Bit addressable	RAM addressable

< Figure 1-5. Address space >

1.4 ALU and Working (W) Register

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry(C), Digit Carry(DC), and Zero(Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

1.5 STATUS Register

This register contains the arithmetic status of ALU and the Bank select for RAM. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the $Z, D C$ or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	-	-	-	0	-	0	0	0
R/W	-	-	-	R/W	-	R/W	R/W	R/W
Bit	Description							
7-5	Not Used (Must be set to 0)							
4	SRAM: SRAM Bank Selection Bit 0 : Page 0 1: Page 1							
3	Not Used (Must be set to 0)							
2	Zero Flag (Z)0 : the result of a logic operation is not zero1: the result of a logic operation is zero							
	Decimal Carry Flag or Decimal/Borrow Flag (DC)							
	ADD instruction				SUB instruction			
1	1: a carry from the low nibble bits of the result occurred 0 : no carry				1: no borrow 0 : a borrow from the low nibble bits of the result occurred			
0	Carry Flag(C) or Borrow Flag							
	ADD instruction				SUB instruction			
	1: a carry occurred from the MSB 0: no carry				1: no borrow 0: a borrow occurred from the MSB			

<Table 1-2. STATUS — System Flags Register (Address: 03H)>

1.6 Interrupt

The TM59PA40 has 1 level, 1 vector and 5 sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual flag. Because TM59PA40 has only 1 vector, there is not a interrupt priority register. The interrupt priority is determined by F/W.

< Figure 1-6. Interrupt Function Diagram >
If the corresponding interrupt enable bit has been set (INTCON), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, A "CALL 0001" instruction is inserted to CPU, and the i-flag is set to prevent recursive interrupt nesting. The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is edge trigged. F/W must clear the interrupt event register while serves the interrupt routine.

1.7 Reset

The TM59PA40 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- Watchdog Reset

< Figure 1-7. Reset Circuit Diagram >
After the Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. And the clock source, LVR level is selected by SYSL register value. After the clock source selection, clock oscillation starts, and oscillation stabilization time must be needed. The minimum required oscillation stabilization time is approximately 2.5 ms ($\mathrm{f}_{\mathrm{Osc}}=10 \mathrm{MHz}$). The Low Voltage Reset features static reset when supply voltage is below a reference value. The four levels of reference voltage can be configured in SYSL register.

The Watchdog Timer is disabled after Reset. F/W can use the CLRWDT instruction to clear and enable the Watchdog Timer. If once enabled, the Watchdog Timer overflow and generate a chip reset signal if no CLRWDT executed in a period of 2^{21} oscillator's cycle (0.25 Second for 8.192 MHz crystal). The Watchdog Timer does not work in Power-down mode to provide wake-up function. It is only designed to prevent F/W goes into endless loop.

1.8 Power-Down Mode

The Power-down mode is activated by SLEEP instruction. During the Power-down mode, the crystal clock oscillation stops to minimize power consumption and all the peripherals are not working. Therefore, The Power down mode can be terminated by Reset or enabled external Interrupts (External Interrupt 0, 1). When the Power down mode is released, the clock circuit requires oscillation stabilization time also.

PWRDN	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	-	-	-	-	-	-	-	-
R/W	-	-	-	-	-	-	-	-
Bit	Description							
$7-0$	Power Down Control Register							
	This register is not physical register. The device can enter STOP mode by writing any value into this register. The SLEEP instruction is equivalent to "MOVWF PWRDN".							

<Table 1-3. PWRDN — Power Down Control Register (Address: 0AH)>

1.9 System Config Register

The System Config Register (SYSL) is the ROM option for initial condition of the MCU. The address 2000H is virtual address which is not reachable in F/W. It can be written by MDS and system use only. You can config clock source, LVR reference voltage control by SYSL register. The default value of SYSL is 3FFFh. The 13th bit is code protection selection bit. If write this bit to 0 , the data of ROM will be all 3FFFh, when user read ROM .

NAME	Bit 13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SYSL	-	-	-	-	-	-	-	-	-
Reset Value	1	1	1	1	1	1	1	1	1
Bit	Description								
13	Code protection selection bit								
	1: No protect								
	0: Code protection								
7	Not Used (Must Set be '1')								
6-5	CSS1	CSS0	CSS1~0Clock Source Selection Bit						
	0	0	External crystal / ceramic oscillator						
	0	1	External RC						
	1	0	Internal RC (0.48 MHz in $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)						
	1	1	Internal RC (2.9 MHz in $\left.\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}\right)$						
4-0	LVS: LVR Level Selection Byte								
			2.0V						
			2.3 V						
			3.0 V						
			3.9V						

<Table 1-4. SYSL — System Config Register (Address : 2000H)>

1.10 Instruction Set

Each instruction is a 14-bit word divided into an OPCODE, which specified the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, " f " represents address designator and "d" represents destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If " d " is " 0 ", the result is placed in the W register. If " d " is " 1 ", the result is placed in the address specified in the instruction.
For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while " f " represents the address designator. For literal operations, " k " represents the literal or constant value.

Field	
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field. 0 : Working register 1: Register file
W	Working Register
Z	Zero Flag
C	Carry Flag
DC	Decimal Carry Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
[]	Option Field
()	Contents
.	Bit Field
\leftarrow	Assign direction

< Table 1-5. OP-CODE Field Description >

< Table 1-6. Instruction Summary >

ADDLW	Add Literal "k" and W
Syntax	ADDLW k
Operands	k: 00h ~ FFh
Operation	$(\mathrm{W}) \leftarrow(\mathrm{W})+\mathrm{k}$
Status Affected	C, DC, Z
OP-Code	011100 kkkk kkkk
Description	The contents of the W register are added to the eight-bit literal ' k ' and the result is placed in the W register.
Cycle	1
Example	ADDLW 0x15 B: W $=0 \times 10$ A: $W=0 \times 25$
ADDWF	Add W and ' f '
Syntax	ADDWF f[,d]
Operands	f: 00h ~ 7Fh d: 0, 1
Operation	(Destination) $\leftarrow(\mathrm{W})+(\mathrm{f})$
Status Affected	C, DC, Z
OP-Code	000111 dfff ffff
Description	Add the contents of the W register with register ' f '. If ' d ' is 0 , the result is stored in the W register. If ' d ' is 1 , the result is stored back in register ' f '.
Cycle	1
Example	ADDWF FSR, 0 $\mathrm{B}: \mathrm{W}=0 \times 17, \mathrm{FSR}=0 \times \mathrm{C} 2$ $\mathrm{A}: \mathrm{W}=0 \times \mathrm{D} 9, \mathrm{FSR}=0 \times \mathrm{C} 2$

ANDLW	Logical AND Literal " k " with W
Syntax	ANDLW k
Operands	$\mathrm{k}: 00 \mathrm{~h} \sim \mathrm{FFh}$
Operation	$(\mathrm{W}) \leftarrow(\mathrm{W})$ 'AND' (f)
Status Affected	Z
OP-Code	011011 kkkk kkkk
Description	The contents of W register are AND'ed with the eight-bit literal ' k '. The
	result is placed in the W register.
Cycle	1
Example	ANDLW $0 \times 5 F$

ANDWF	AND W with f
Syntax	ANDWF f [,d]
Operands	$\mathrm{f}: 00 \mathrm{~h} \sim 7 \mathrm{Fh} \mathrm{d}: 0,1$
Operation	(Destination) $\leftarrow(\mathrm{W})$ 'AND' (f)
Status Affected	Z
OP-Code	000101 dfff ffff
Description	AND the W register with register ' f '. If ' d ' is 0 , the result is stored in the W register. If ' d ' is 1 , the result is stored back in register ' f '.
Cycle	1
Example	ANDWF FSR, $1 \quad \mathrm{~B}: \mathrm{W}=0 \times 17, \mathrm{FSR}=0 \times \mathrm{C} 2$
	$\mathrm{A}: \mathrm{W}=0 \times 17, \mathrm{FSR}=0 \times 02$

BCF	Clear "b" bit of "f"	
Syntax	BCF $f[, b]$	
Operands	$f: 00 h \sim 3 F h \quad b: 0 \sim 7$	
Operation	(f.b) $\leftarrow 0$	
Status Affected	-	
OP-Code	$01000 b$ bbff ffff	
Description	Bit 'b' in register 'f' is cleared.	
Cycle	1	B : FLAG_REG $=0 \times C 7$
Example	BCF FLAG_REG, 7	A:FLAG_REG $=0 \times 47$

BSF	Set "b" bit of "f"	
Syntax	BSF $f[, b]$	
Operands	$f: 00 h \sim 3 F h \quad b: 0 \sim 7$	
Operation	(f.b) $\leftarrow 1$	
Status Affected	-	
OP-Code	$01001 b$ bbff ffff	
Description	Bit 'b' in register 'f' is set.	
Cycle	1	
Example	BSF FLAG_REG, 7	B :FLAG_REG $=0 \times 0 A$
		A :FLAG_REG $=0 \times 8 A$

BTFSC	Test 'b' bit of 'f', skip if clear(0)
Syntax	BTFSC f [,b]
Operands	f:00h~3Fh b: 0~7
Operation	Skip next instruction if (f.b) $=0$
Status Affected	-
OP-Code	01 010b bbff ffff
Description	If bit ' b ' in register ' f ' is ' 1 ', then the next instruction is executed. If bit ' b ' in register ' f ' is ' 0 ', then the next instruction is discarded, and a NOP is executed instead, making this a 2nd cycle instruction.
Cycle	1 or 2
Example	LABEL1 BTFSC FLAG, $1 \quad \mathrm{~B}: \mathrm{PC}=\mathrm{LABEL} 1$
	TRUE GOTO SUB1 $\mathrm{A}:$ if FLAG. $1=0, \mathrm{PC}=\mathrm{FALSE}$

BTFSS Test "b" bit of "f", skip if set(1)

Syntax
Operands
Operation \quad Skip next instruction if (f.b) $=1$
Status Affected
OP-Code
Description

Cycle
Example
BTFSS f[,b]
f:OOh~3Fh b:0~7

01 011b bbff ffff

Example

Test "b" bit of "f", skip if set(1)

If bit ' b ' in register ' f ' is ' 0 ', then the next instruction is executed. If bit ' b ' in register ' f ' is ' 1 ', then the next instruction is discarded, and a NOP is executed instead, making this a 2nd cycle instruction.
LABEL1 BTFSS FLAG, 1
TRUE GOTO SUB1
FALSE ...
$\mathrm{B}: \mathrm{PC}=\mathrm{LABEL} 1$
A : if FLAG. $1=0, \mathrm{PC}=$ TRUE if FLAG. $1=1, \mathrm{PC}=\mathrm{FALSE}$

CALL	Call subroutine "k"
Syntax	CALL k
Operands	K : 00h~FFFh
Operation	Operation: TOS $\leftarrow(\mathrm{PC})+$ 1, PC.11~0 $\leftarrow \mathrm{k}$
Status Affected	-
OP-Code	10 kkkk kkkk kkkk
Description	Call Subroutine. First, return address (PC+1) is pushed onto the stack. The eleven-bit immediate address is loaded into PC bits <11:0>. CALL is a two-cycle instruction.
Cycle	2
Example	$\begin{array}{ll}\text { LABEL1 } \text { CALL SUB1 } & B: P C=\text { LABEL1 } \\ & A: P C=S U B 1, T O S=L A B E L 1+1\end{array}$
CLRF	Clear f
Syntax	CLRF f
Operands	f: 00h ~ 7Fh
Operation	(f) $\leftarrow 00 \mathrm{~h}, \mathrm{Z} \leftarrow 1$
Status Affected	Z
OP-Code	0000011 fff ffff
Description	The contents of register ' f ' are cleared and the Z bit is set.
Cycle	1
Example	CLRF FLAG_REG B: FLAG_REG $=0 \times 5 \mathrm{~A}$ A: FLAG REG $=0 \times 00, \mathrm{Z}=1$
CLRW	Clear W
Syntax	CLRW
Operands	-
Operation	$(\mathrm{W}) \leftarrow 00 \mathrm{~h}, \mathrm{Z} \leftarrow 1$
Status Affected	Z
OP-Code	00000101000000
Description	W register is cleared and Zero bit (Z) is set.
Cycle	1
Example	CLRW $\begin{aligned} & B: W=0 \times 5 A \\ & A: W=0 \times 00, Z=1 \end{aligned}$
CLRWDT	Clear Watchdog Timer
Syntax	CLRWDT
Operands	-
Operation	WDTE $\leftarrow 00 \mathrm{~h}$
Status Affected	-
OP-Code	00000010001001
Description	CLRWDT instruction enables and resets the Watchdog Timer.
Cycle	1
Example	CLRWDT $\mathrm{B}:$ WDT counter $=$? $\mathrm{A}:$ WDT counter $=0 \times 00$
COMF	Complement f
Syntax	COMF f [,d]
Operands	$\mathrm{f}: 00 \mathrm{~h} \sim 7 \mathrm{Fh}, \mathrm{d}: 0,1$
Operation	(destination) $\leftarrow(\overline{\mathrm{f}})$
Status Affected	Z
OP-Code	001001 dfff ffff
Description	The contents of register ' f ' are complemented. If ' d ' is 0 , the result is stored in W. If ' d ' is 1 , the result is stored back in register ' f '.
Cycle	1
Example	COMF REG1,0 $\begin{aligned} & \mathrm{B}: \mathrm{REG} 1=0 \times 13 \\ & \mathrm{~A}: \mathrm{REG} 1=0 \times 13, \mathrm{~W}=0 \times E \mathrm{C} \end{aligned}$

DECF	Decrement f
Syntax	DECF $f[, \mathrm{~d}]$
Operands	$\mathrm{f}: 00 \mathrm{\sim} \sim 7 \mathrm{Fh}, \mathrm{d}: 0,1$
Operation	(destination) $\leftarrow(\mathrm{f})-1$
Status Affected	Z
OP-Code	000011 dfff ffff
Description	Decrement register ' f '. If ' d ' is 0 , the result is stored in the W register. If ' d '
	is 1 , the result is stored back in register ' f '.
Cycle	1
Example	DECF CNT, 1

DECFSZ Decrement f, Skip if 0
Syntax DECFSZ f[,d]

Operation $\quad($ destination $) \leftarrow(\mathrm{f})-1$, skip next instruction if result is 0

Status Affected
OP-Code 001011 dfff ffff
Description

Cycle
Example
1 or 2

The contents of register ' f ' are decremented. If ' d ' is 0 , the result is placed in the W register. If ' d ' is 1 , the result is placed back in register ' f '. If the result is 1 , the next instruction is executed. If the result is 0 , then a NOP is executed instead, making it a 2 cycle instruction.

LABEL1 DECFSZ CNT, $1 \quad \mathrm{~B}: \mathrm{PC}=\mathrm{LABEL} 1$
GOTO LOOP CONTINUE
$\mathrm{A}: \mathrm{CNT}=\mathrm{CNT}-1$
if $C N T=0, P C=C O N T I N U E$
if $\mathrm{CNT}=0, \mathrm{PC}=\mathrm{LABEL} 1+1$

GOTO	Unconditional Branch
Syntax	GOTO k
Operands	$\mathrm{k}: 00 \mathrm{~h} \sim$ FFFh
Operation	PC.11~0 $\leftarrow \mathrm{k}$
Status Affected	-
OP-Code	11 kkkk kkkk kkkk
Description	GOTO is an unconditional branch. The 12-bit immediate value is loaded
	into PC bits <11:0>. GOTO is a two-cycle instruction.
Cycle	2
Example	LABEL1 GOTO SUB1

INCF	Increment f
Syntax	INCF $\mathrm{f}[\mathrm{d}]$
Operands	$\mathrm{f}: 00 \mathrm{~d} \sim 7 \mathrm{Fh}$
Operation	(destination) $\leftarrow(\mathrm{f})+1$
Status Affected	Z
OP-Code	001010 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0 , the result is placed
	in the W register. If 'd' is 1 , the result is placed back in register ' f '.
Cycle	1
Example	INCF CNT, 1

INCFSZ	Increment f , Skip if 0		
Syntax	INCFSZ f [,d]		
Operands	$\mathrm{f}: 00 \mathrm{~h} \sim 7 \mathrm{Fh}, \mathrm{d}: 0,1$		
Operation	(destination) \leftarrow (f) +1 , skip next instruction if result is 0		
Status Affected	-		
OP-Code	001111 dfff ffff		
Description	The contents of register ' f ' are incremented. If ' d ' is 0 , the result is placed in the W register. If ' d ' is 1 , the result is placed back in register ' f '. If the result is 1 , the next instruction is executed. If the result is 0 , a NOP is executed instead, making it a 2 cycle instruction.		
Cycle	1 or 2		
Example	LABEL1	INCFSZ CNT, 1	$\mathrm{B}: \mathrm{PC}=\mathrm{LABEL} 1$
		GOTO LOOP	$\mathrm{A}: \mathrm{CNT}=\mathrm{CNT}+1$
		CONTINUE	if $\mathrm{CNT}=0, \mathrm{PC}=\mathrm{CONTINUE}$
			if $\mathrm{CNT}=0, \mathrm{PC}=\mathrm{LABEL} 1+1$

IORLW	Inclusive OR Literal with W
Syntax	IORLW k
Operands	$\mathrm{k}: 00 \mathrm{~h} \sim \mathrm{FFh}$
Operation	$(\mathrm{W}) \leftarrow(\mathrm{W})$ OR k
Status Affected	Z
OP-Code	011010 kkkk kkkk
Description	The contents of the W register is OR'ed with the eight-bit literal 'k'. The
	result is placed in the W register.
Cycle	1
IORLW 0×35	$B: W=0 \times 9 A$
Example	

IORWF	Inclusive OR W with f
Syntax	IORWF f [,d]
Operands	$\mathrm{f}: 00 \mathrm{~h} \sim 7 \mathrm{Fh}, \mathrm{d}: 0,1$
Operation	(destination) $\leftarrow(\mathrm{W})$ OR k
Status Affected	Z
OP-Code	000100 dfff ffff
Description	Inclusive OR the W register with register ' f '. If ' d ' is 0 , the result is placed in the W register. If ' d ' is 1 , the result is placed back in register ' f '.
Cycle	1
Example	IORWF RESULT, 0 $\mathrm{B}:$ RESULT $=0 \times 13, \mathrm{~W}=0 \times 91$ A : RESULT $=0 \times 13, W=0 \times 93, Z=0$

MOVFW	Move f to W
Syntax	MOVFW f
Operands	$\mathrm{f}: 00 \mathrm{~h} \sim 7 \mathrm{Fh}$
Operation	$(\mathrm{W}) \leftarrow(\mathrm{f})$
Status Affected	(
OP-Code	001000 Offf ffff
Description	The contents of register f are moved to W register.
Cycle	1
Example	MOVF FSR, 0 $B: W=$? $A: W \leftarrow f$, if $W=0 Z=1$

MOVLW	Move Literal to W
Syntax	MOVLW k
Operands	k: 00h ~ FFh
Operation	$(\mathrm{W}) \leftarrow \mathrm{k}$
Status Affected	-
OP-Code	011001 kkkk kkkk
Description	The eight-bit literal ' k ' is loaded into W register. The don't cares will assemble as 0's.
Cycle	1
Example	$\begin{array}{ll}\text { MOVLW 0x5A } & \text { B : W }=\text { ? } \\ & \text { A }: W=0 \times 5 A\end{array}$
MOVWF	Move W to f
Syntax	MOVWF f
Operands	$\mathrm{f}:$ 00h ~ 7Fh
Operation	(f) $\leftarrow(\mathrm{W})$
Status Affected	(
OP-Code	0000001 fff ffff
Description	Move data from W register to register ' f '.
Cycle	1
Example	MOVWF REG1 $B:$ REG1 $=0 x F F, W=0 \times 4 F$ A : REG1 $=0 \times 4 F, W=0 \times 4 F$
NOP	No Operation
Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	Z
OP-Code	00000000000000
Description	No Operation
Cycle	1
Example	NOP
RETI	Return from Interrupt
Syntax	RETI
Operands	-
Operation	$\mathrm{PC} \leftarrow \mathrm{TOS}, \mathrm{GIE} \leftarrow 1$
Status Affected	-
OP-Code	00000001100000
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded in to the PC. Interrupts are enabled. This is a two-cycle instruction.
Cycle	2
Example	RETFIE $\quad \mathrm{A}: \mathrm{PC}=\mathrm{TOS}, \mathrm{GIE}=1$

RETLW	Return with Literal in W
Syntax	RETLW k
Operands	k: 00h ~ FFh
Operation	$\mathrm{PC} \leftarrow \mathrm{TOS},(\mathrm{W}) \leftarrow \mathrm{k}$
Status Affected	-
OP-Code	011000 kkkk kkkk
Description	The W register is loaded with the eightbit literal ' k '. The program counter is loaded from the top of the stack (the return address). This is a twocycle instruction.
Cycle	2
Example	CALL TABLE $B: W=0 \times 07$ $A: W=$ value of $k 8$
	TABLE ADDWF PCL, 1 RETLW k1 RETLW k2

RET	Return from Subroutine
Syntax	RET
Operands	-
Operation	$\mathrm{PC} \leftarrow \mathrm{TOS}$
Status Affected	-
OP-Code	00000001000000
Description	Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction.
Cycle	2
Example	RETURN $\quad \mathrm{A}: \mathrm{PC}=\mathrm{TOS}$
RLF	Rotate Left f through Carry
Syntax	RLF f [,d]
Operands	$\mathrm{f}: 00 \mathrm{~h} \sim 7 \mathrm{Fh}, \mathrm{d}: 0,1$
Operation	
Status Affected	C
OP-Code	001101 dfff ffff
Description	The contents of register ' f ' are rotated one bit to the left through the Carry Flag. If ' d ' is 0 , the result is placed in the W register. If ' d ' is 1 , the result is stored back in register ' f '.
Cycle	1
Example	RLF REG1,0 B: REG1 $=11100110, \mathrm{C}=0$ $\mathrm{A}:$ REG1 $=11100110$
	$\mathrm{W}=11001100, C=1$

RRF	Rotate Right f through Carry
Syntax	RRF f [, d]
Operands	f: 00h~7Fh, d: 0, 1
Operation	$\rightarrow \mathrm{C} \rightarrow \text { Register } \mathrm{f}$
Status Affected	C
OP-Code	001100 dfff ffff
Description	The contents of register ' f ' are rotated one bit to the right through the Carry Flag. If ' d ' is 0 , the result is placed in the W register. If ' d ' is 1 , the result is placed back in register ' f '.
Cycle	1
Example	RRF REG1,0 $\begin{aligned} & \mathrm{B}: \text { REG1 }=11100110, \mathrm{C}=0 \\ & \mathrm{~A}: \text { REG1 }=11100110 \end{aligned}$
	$\mathrm{W}=01110011, \mathrm{C}=0$

SLEEP	Go into standby mode, Clock oscillation stops
Syntax	SLEEP
Operands	-
Operation	-
Status Affected	-
OP-Code	000000 1000 1010
Description	Go into SLEEP mode with the oscillator stopped.
Cycle	1
Example	SLEEP

SUBWF	Subtract W from f
Syntax	SUBWF $\mathrm{f}[, \mathrm{d}]$

Operands $\quad f: 00 h \sim 7 F h, d: 0,1$
Operation $\quad(\mathrm{W}) \leftarrow(\mathrm{f})-(\mathrm{W})$

Status Affected
OP-Code
Description

Cycle
Example

C, DC, Z
000010 dfff ffff
Subtract (2's complement method) W register from register ' f '. If ' d ' is 0 , the result is stored in the W register. If ' d ' is 1 , the result is stored back in register ' f '.
1
SUBWF REG1, $1 \quad B: R E G 1=3, W=2, C=?, Z=$?
A : REG1 = 1, W = 2, C = 1, $Z=0$
SUBWF REG1,1 $1: R E G 1=2, W=2, C=?, Z=?$
A : REG1 = 0, $W=2, C=1, Z=1$
$B: \operatorname{REG} 1=1, W=2, C=?, Z=$?
$\mathrm{A}:$ REG1 $=\mathrm{FFh}, \mathrm{W}=2, \mathrm{C}=0, \mathrm{Z}=0$

SWAPF	Swap Nibbles in f
Syntax	SWAPF f [,d]
Operands	$\mathrm{f}: 00 \mathrm{~m}$ 7Fh, d: 0, 1
Operation	(destination, 7~4) $\leftarrow($ f.3~0), (destination.3~0) $\leftarrow($ f.7~4)
Status Affected	-
OP-Code	001110 dfff ffff
Description	The upper and lower nibbles of register ' f ' are exchanged. If ' d ' is 0 , the result is placed in W register. If ' d ' is 1 , the result is placed in register ' f '.
Cycle	1
Example	SWAPF REG, 0 $\begin{aligned} & \mathrm{B}: \mathrm{REG} 1=0 \times \mathrm{A} 5 \\ & \mathrm{~A}: \mathrm{REG} 1=0 \times \mathrm{A}, \mathrm{~W}=0 \times 5 \mathrm{~A} \end{aligned}$

TESTZ	Test if ' f ' is zero
Syntax	TESTZ f
Operands	f: 00h~7Fh
Operation	Set Z flag if (f) is 0
Status Affected	Z
OP-Code	0010001 fff ffff
Description	If the content of register ' f ' is 0 , Zero flag is set to 1 .
Cycle	1
Example	TESTZ REG1 $\mathrm{B}: \mathrm{REG} 1=0, \mathrm{Z}=$? A: REG1 $=0, Z=1$
XORLW	Exclusive OR Literal with W
Syntax	XORLW k
Operands	k: 00h ~ FFh
Operation	$(\mathrm{W}) \leftarrow(\mathrm{W})$ XOR k
Status Affected	Z
OP-Code	011111 kkkk kkkk
Description	The contents of the W register are XOR'ed with the eight-bit literal ' k '. The result is placed in the W register.
Cycle	1
Example	XORLW 0xAF
XORWF	Exclusive OR W with f
Syntax	XORWF f [,d]
Operands	f: 00h ~ 7Fh, d: 0, 1
Operation	(destination) $\leftarrow(\mathrm{W})$ XOR (f)
Status Affected	Z
OP-Code	000110 dfff ffff
Description	Exclusive OR the contents of the W register with register ' f '. If ' d ' is 0 , the result is stored in the W register. If ' d ' is 1 , the result is stored back in register ' f '.
Cycle	1
Example	XORWF REG 1 $\begin{aligned} & B: \text { REG }=0 \times A F, W=0 \times B 5 \\ & A: R E G=0 \times 1 A, W=0 \times B 5 \end{aligned}$

Chapter 2 Control Register

Description	Mnemonic	Dec	Hex	R/W
System Config Reg Low	SYSL	-	2000	-
Indirect File Reg	INDF	0	00 H	-
Timer 0 Counter Reg	TOCNT	1	01H	R
Program Counter Low	PCL	2	02H	R/W
System Flags Reg	STATUS	3	03H	R/W
File Select Reg	FSR	4	04H	R/W
Port A Data Reg	PAD	5	05H	R/W
Port B Data Reg	PBD	6	06H	R/W
Port C Data Reg	PCD	7	07H	R/W
Clock control Reg	CLKCON	8	08H	R/W
WatchDog Timer Control Reg	WDTE	9	09H	-
Stop mode Control Reg	PWRDN	10	OAH	-
Interrupt Control Reg	INTCON	11	OBH	R/W
Interrupt Pending Reg	INTPND	12	OCH	R/W
External Interrupt Signal Control Reg	PINTD	13	ODH	R/W
Timer 0 Control Reg	TOCON	14	OEH	R/W
Timer 0 Data Reg	TODATA	15	OFH	R/W
PWM 0 Control Reg	PWMOCON	16	10 H	R/W
PWM 0 Data Reg	PWMODAT	17	11H	R/W
PWM 1 Control Reg	PWM1CON	18	12 H	R/W
PWM 1 Data Reg	PWM1DAT	19	13H	R/W
Buzzer Control Reg	BZCON	20	14H	R/W
Port A Control Reg Low	PACONL	21	15H	R/W
Port A Control Reg High	PACONH	22	16H	R/W
Port B Control Reg	PBCON	23	17H	R/W
Port C Control Reg Low	PCCONL	24	18H	R/W
Port C Control Reg High	PCCONH	25	19H	R/W
ADC Control Reg	ADCCON	26	1AH	R/W
ADC DATA Reg Low	ADCDATL	27	1BH	R
ADC DATA Reg High	ADCDATH	28	1 CH	R
Location 1DH is factory use only				
General Purpose Register 0	GPR0	30	1EH	R/W
General Purpose Register 1	GPR1	31	1FH	R/W

ADCCON - AID Converter Control Register
Address: 1AH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	

ADCDATL - ADC Data Register Low Byte
Address: 1BH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	-	-	-	-	-	-	R	R	

Bit		Description
$1-0$	ADC Data Low Byte	
	XX	ADC Data Value Lower 2Bit

ADCDATH - ADC Data Register High Byte

Address: 1CH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	R	R	R	R	R	R	R	R	

Bit	Description	
$7-0$	ADC Data High Byte	
	XXXXXXXX	ADC Data Value Higher 8Bit

BZCON - Buzzer Out Control Register

Address: 14H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W									

Bit	Description		
7-6	Input Clock Selection		
	0	0	$\mathrm{f}_{\text {osc }} / 8$
	0	1	$\mathrm{f}_{\text {Osc }} / 16$
	1	0	$\mathrm{f}_{\text {osc }} / 32$
	1	1	$\mathrm{f}_{\text {Osc }} / 64$
5-0	Buzzer Period Data		
			Period Data

CLKCON - Clock Control Register
Address: 08H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	-	-	-	-	-	0	0	
R/W	R/W	-	-	-	-	-	R/W	R/W	

FSR — File Select Register
Address: 04H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	-	R/W							

Bit	Description
7	Not Used
$6-0$	File Select Register
	0000000
	$1 \sim 7 \mathrm{Fh}$
	Not Used.

GPR0/1 - General Purpose Register

Address: 1EH/1FH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description
$7-0$	General Purpose Register
	GPR0, GPR1 are mirrored all bank. It is useful to pass arguments to SUB routine or backup Working register (W) and STATUS register in ISR or SUB routine.

INTCON - Interrupt Control Register
Address: 0BH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	0	0	0	0	0	
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W	

INTPND - Interrupt Pending Register
Address: 0CH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	0	0	0	0	0	
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W	

Bit	Description	
7-5	Not Used	
4	PWM 1 Overflow Interrupt Pending Bit	
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
3	PWM 0 Overflow Interrupt Pending Bit	
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
2	Timer 0 Interrupt Pending Bit	
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
1	Port A. 1 EXTINT1 Interrupt Pending Bit	
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
0	Port A. 0 EXTINTO Interrupt Pending Bit	
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)

PACONL — Port A Control Register (Low Byte)

Address: 15H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description		
7-6	Port A. 3 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC3 Input (Schmitt trigger input off)
5-4	Port A. 2 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC2 Input (Schmitt trigger input off)
3-2	Port A. 1 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable) / External Interrupt 1 Input
	0	1	Schmitt trigger input / External Interrupt 1 Input
	1	0	Push-pull output
	1	1	ADC1 Input (Schmitt trigger input off)
1-0	Port A. 0 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable) / External Interrupt 0 Input
	0	1	Schmitt trigger input / External Interrupt 0 Input
	1	0	Push-pull output
	1	1	ADC0 Input (Schmitt trigger input off)

PACONH — Port A Control Register (High Byte)
Address: 16H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description		
7-6	Port A. 7 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable)
	0	1	PWM 1 output
	1	0	Push-pull output
	1	1	ADC7 Input (Schmitt trigger input off)
5-4	Port A. 6 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable)
	0	1	PWM 0 output
	1	0	Push-pull output
	1	1	ADC6 Input (Schmitt trigger input off)
3-2	Port A. 5 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC5 Input (Schmitt trigger input off)
1-0	Port A. 4 Configuration Bits		
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC4 Input (Schmitt trigger input off)

PBCON - Port B Control Register
Address: 17H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	0	0	1	0	0	1	
R/W	-	-	-	-	-	-	-	-	

Bit	Description			
7-6	Not Used			
5-3	Port B. 1 Configuration Bits			
	0	0	0	Schmitt trigger input (pull-up enable)
	0	0	1	Schmitt trigger input
	0	1	0	Push-pull output
	0	1	1	Schmitt trigger input (pull-down)
	1	0	0	Open-drain Output
	Other Value			Not Used
2-0	Port B. 0 Configuration Bits			
	0	0	0	Schmitt trigger input (pull-up enable)
	0	0	1	Schmitt trigger input
	0	1	0	Push-pull output
	0	1	1	Schmitt trigger input (pull-down)
	1	0	0	Open-drain Output
	Other Value			Not Used

PCCONL — Port C Control Register (Low Byte)

Address: 18H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description		
7-6	Port C. 3 Configuration Bits		
	0	0	Schmitt trigger input (pull-up)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	Open-drain output
5-4	Port C. 2 Configuration Bits		
	0	0	Schmitt trigger input (pull-up)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	Open-drain output
3-2	Port C. 1 Configuration Bits		
	0	0	Schmitt trigger input (pull-up)
	0	1	Buzzer Out
	1	0	Push-pull output
	1	1	Open-drain output
1-0	Port C. 0 Configuration Bits		
	0	0	Schmitt trigger input(pull-up)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	T0 match output

PCCONH — Port C Control Register (High Byte)

Address: 19H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description			
7-5	Port C. 6 Configuration Bits			
	0	0	0	Schmitt trigger input (pull-up)
	0	0	1	Schmitt trigger input
	0	1	X	ADC8 Input
	1	0	0	Push-pull output
	1	0	1	Open-drain output (pull-up)
	1	1	0	Open-drain output
	1	1	1	Clock Output
4-2	Port C. 5 Configuration Bits			
	0	0	0	Schmitt trigger input (pull-up)
	0	0	1	Schmitt trigger input
	0	1	X	ADC9 Input
	1	0	0	Push-pull output
	1	0	1	Open-drain output (pull-up)
	1	1	0	Open-drain output
	1	1	1	Not Used
1-0	Port C. 4 Configuration Bits			
	0	0	Schmitt trigger input (pull-up)	
	0	1	Schmitt trigger input	
	1	0	Push-pull output	
	1	1	Open-drain output	

PAD - Port A Data Register
Address: 05H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit		Description
$7-0$	Port A.7-0 Data Bits	

PBD - Port B Data Register
Address: 06H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	0	0	0	
R/W	-	-	-	-	-	-	-	-	

Bit	
$7-3$	Not Used
$2-0$	Port B.2-0 Data Bits

PCD - Port C Data Register

Address: 07H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	0	0	0	0	0	0	0	
R/W	-	R/W							

Bit	
7	Not Used
$6-0$	Port C.6-0 Data Bits

PCL — Program Counter Low Byte
Address: 02H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description
$7-0$	Program Counter Low Byte
	This register represents Lower 8-Bit of PC+1. The PC can be changed writing any value (00h~FFh) into this register. It is similar to GOTO instruction. But the branch instruction by PCL can access only higher address than PC.

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	0	0	0	0	
R/W	-	-	-	-	R/W	R/W	R/W	R/W	

Bit	Description		
$7-4$	Not Used		
$3-2$	External Interrupt 1 Input Signal Selection Bits		
	0	0	Falling Edge
	0	1	Rising Edge
	1	X	Both Edge
	External Interrupt 0 Input Signal Selection Bits		
	0	0	Falling Edge
	0	1	Rising Edge
	1	X	Both Edge

PWMOCON — PWM0 Control Register

Address: 10H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	0	0	-	0	0	0	
R/W	-	-	R/W	R/W	-	R/W	R/W	R/W	

PWMODAT — PWMO Data Register

Address: 11H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description		
7-2	PWM Period Data		
	XXXXXX		Period Data
1-0	Extension Cycle Selection Bit		
	0	0	-
	0	1	2
	1	0	1,3
	1	1	1,2,3

PWM1CON — PWM1 Control Register
Address: 12H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	-	0	0	0	
R/W	R/W	R/W	R/W	R/W	-	R/W	R/W	R/W	

Bit	Description		
7-6	PWM1 Extension Cycle Selection Bit		
	0	0	-
	0	1	2
	1	0	1, 3
	1	1	1, 2, 3
5-4	PWM1 Input Clock Selection		
	0	0	$\mathrm{f}_{\text {Osc }} / 64$
	0	1	$\mathrm{f}_{\text {Osc }} / 8$
	1	0	$\mathrm{f}_{\text {osc }} / 2$
	1	1	$\mathrm{f}_{\text {Osc }} / 1$
3	Not Used		
2	PWM1 DATA Reload Interval Selection Bit		
	0		ad from 10-bit up counter overflow
	1		ad from 8-bit up counter overflow
1	PWM1 Counter Clear Bit (Auto Cleared)		
	0		fect
	1		the PWM counter (when write)
0	PWM1 Enable Bit		
	0		counter
	1		(Resume counting)

PWM1DAT — PWM1 Data Register

Address: 13H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W									

Bit	Description	
$7-0$	PWM1 Period Data Low Byte	
	XXXXXXXX	Period Data

PWRDN - Power Down Control Register
Address: 0AH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	-	-	-	-	-	-	-	-	

Bit	Description
$7-0$	Power Down Control Register
	This register is not physical register. The device can enter STOP mode by writing any value into this register. The SLEEP instruction is equivalent to "MOVWF PWRDN".

STATUS - System Flags Register

Address: 03H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	0	-	0	0	0	
R/W	-	-	-	R/W	-	R/W	R/W	R/W	

Bit	Description		
7-5	Not Used (Must be set to 0)		
4	SRAM Bank Selection Bit		
	0	Page 0	
	1	Page 1	
3	Not Used (Must be set to 0)		
2	Zero Flag(Z)		
	0	The result of a logic operation is not zero	
	1	The result of a logic operation is zero	
1	Decimal Carry Flag or Decimal/Borrow Flag (DC)		
	ADD instruction		SUB instruction
	1: a carry from the low nibble bits of the result occurred 0: no carry		1: no borrow 0 : a borrow from the low nibble bits of the result occurred
0	Carry Flag(C) or Borrow Flag		
		ADD instruction	SUB instruction
		carry occurred from the MSB o carry	1: no borrow 0 : a borrow occurred from the MSB

SYSL - System Config Register
Address: 2000H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W	-	-	-	-	-	-	-	-	

Bit	Description	
13	Code protection selection bit	
	1 No prot	tect
	0 Code	protection
7	Not Used (Must Set be ' 1 ')	
6-5	Clock Source Selection Bit	
	CSS1 ${ }^{\text {CSS }}$	CSS1 ~ 0 Clock Source Selection Bit
	0 0	External crystal / ceramic oscillator
	0	External RC
	1 0	Internal RC (0.48 MHz in $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)
	1 1	Internal RC (2.9 MHz in $\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$)
4-0	LVS: LVR Level Selection Bit	
	11001	2.0 V
	11010	2.3 V
	10001	3.0 V
	01111	3.9 V

TOCON - TIMER 0 Control Register
Address: 0EH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	0	0	-	-	-	0	
R/W	-	-	R/W	R/W	-	-	-	R/W	

TOCNT - TIMER 0 Counter Register
Address: 01H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	

Bit		Description
$7-0$	Timer 0 Counter Value	

TODATA - TIMER 0 Data Register
Address: 0FH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W									

Bit		Description
$7-0$	Period Data	

WDTE - WatchDog Timer Control Register
Address: 09H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	-	-	-	-	-	-	-	-	

Bit	Description
$7-0$	WatchDog Timer Control Register
	This register is not physical register. The WatchDog timer can be enabled and refreshed by CLRWDT or writing any value into this register. The CLRWDT instruction is equivalent to "MOVWF WDTE".

3. 8-bit Timer

TIMERO has the following functional components:

- Clock frequency selector
- 8-bit counter (TOCNT), 8-bit comparator, 8-bit data register (TODATA), and TODATA buffer.
- TIMER0 control register (TOCON)

< Figure 3-1 Block Diagram >
TOCON is used to select input clock frequency, to clear the timer 0 counter. Interrupt enable and pending bit for TimerO interrupt is controlled by INTCON and INTPND. In interval timer mode, a match signal is generated when the counter value is identical to the value TODATA. The match signal generates a TIMER0 match interrupt, clears the counter and counting resumes. If the TIMERO interrupt is disabled (INTCON. $2=0$), the match signal do not generates match interrupt request. The clock divider is not the constituent of Timer 0 , then the divided clock is asynchronous with Timer interrupt enable signal. Therefore, there is discrepancy in first match interval. To minimize this discrepancy, divider reset can be used (CLKCON).

< Figure 3-2 Timimg diagram >

< Figure 3-3 Divider reset >

Example 3-1> Timer 0 Sample Code ($\mathrm{f}_{\mathrm{OSc}}=8.192 \mathrm{MHz}$, Interval $=1 \mathrm{~ms}$, TOOUT $=500 \mathrm{~Hz}$)

int_vector: BTFSS GOTO \cdot \cdot NEXT_INT $:$ \cdot RETI	01h INTCON, 2 NEXT_INT	; Timer 0 Interrupt Check ; Jump to Other Interrupt Rotine ; Timer 0 Interrupt Rotine
MOVLW MOVWF	1Fh	; Set T0DATA 1FH
MOVLW MOVWF	$\begin{aligned} & \text { 00010000b } \\ & \text { T0CON } \end{aligned}$	
BSF	TOCON, 0	; Timer0 Counter Clear
$\begin{aligned} & \text { BSF } \\ & \text { BSF } \end{aligned}$	$\begin{array}{ll} \text { PCCONL, } & 0 \\ \text { PCCONL, } & 1 \end{array}$; Select PX. 0 match output. ; PCCONL Bit [1-0]:[11] is match output
BSF	INTCON, 2	; Timer0 Interrupt Enable

4. 8-Bit PWM

PWM0 has the following functional components:

- Clock frequency selector
- 8-bit up-counter, 6-bit comparator, 6-bit data register and 6-bit data buffer.
- 2-bit extension control logic, 2-bit extension register and extension data buffer.
- Control register (PWMOCON)

To determine the PWM0 operating frequency, the upper 6-bits of counter is compared to the PWM0 data register (PWMODAT.7-.2). In order to achieve higher resolutions, the lower 2-bits of the counter can be used to modulate the "extended" cycle.

< Figure 4-1 Block Diagram >
The PWM output signal toggles to Low level whenever the lower 6-bit of counter matches the reference data register (PWMODAT.7-.2). If the value in the PWMODAT.7-. 2 register is not zero, an overflow of the lower 6bits of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference data register determines the module's base duty cycle.

The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register (PWMODAT.1-.0). This lower 2-bits of counter value is used to "extend" the duty cycle of the PWM output. The "extension" value is one extra clock period at specific cycles (see Table 4-1).

PWMODAT.1-0	Extended Cycle
00	None
01	2
10	1,3
11	$1,2,3$

< Table 4-1 PWM output extended cycle >

For example, if the value in the extension data register is ' 01 B ', the 2 nd cycle will be one pulse longer than the other 3 cycles. (see Figure 4-2).

< Figure 4-2 Extended Output >

Example 4-1> PWM0 Sample Code ($\mathrm{f}_{\mathrm{Osc}}=8 \mathrm{MHz}, 1$ Cycle $=500 \mu \mathrm{~s}$, Extend 2nd Cycle $)$

MOVLW MOVWF	05h PWM0DAT	Set PWMO Data Register Data = 1, Extension = 1
CLRF	PACONH	
BSF	PACONH, 4	; Select PACONH.54 '01' PWM0 Out.
CLRF	PWM0CON	; $\mathrm{fosc}^{\text {/ }}$ 64, 8-bit Overflow Reload, PWM Stop
BSF	PWM0CON, 1	; PWM0 Counter Clear
BSF	PWMOCON, 0	; PWM0 Start
.		
BCF	PWMOCON, 0	; PWM0 Stop

5. 10-Bit PWM

PWM1 has the following functional components:

- Clock frequency selector
- 10-bit up-counter, 8-bit comparator, 8-bit data register and 8-bit data buffer.
- 2-bit extension control logic, 2-bit extension register and extension data buffer.
- Control register (PWM1CON)

To determine the PWM1 operating frequency, the upper 8-bit counter is compared to the PWM1 data register (PWM1DAT). In order to achieve higher resolutions, the 2-bits of the counter can be used to modulate the "extended" cycle.

< Figure 5-1 Block Diagram >
The PWM output signal toggles to Low level whenever the lower 8-bit of counter matches the reference data register (PWM1DAT). If the value in the PWM1DAT register is not zero, an overflow of the lower 8-bits of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference data register determines the module's base duty cycle.

The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register (PWM1CON.7-6). This lower 2-bits is used to "extend" the duty cycle of the PWM output. The "extension" value is one extra clock period at specific cycles (see Table 5-1).

PWM1CON.7-6	Extended Cycle
00	None
01	2
10	1,3
11	$1,2,3$

< Table 5-1 PWM output extended cycle >

For example, if the value in the extension data register is ' 01 B ', the 2 nd cycle will be one pulse longer than the other 3 cycles. (see Figure 5-2).

< Figure 5-2 Extended Output >

6. Analog to Digital Converter

The 10-bit CMOS ADC (Analog to Digital Converter) consists of a 10-channel analog input multiplexer, control register, clock generator, 10 bit successive approximation register, and output register.

A/D CONVERSION PROCEDURE

1. Configure the analog input pins to ADC input mode by making the appropriate settings in the I/O port control registers.
2. Select ADC input channel.
3. Start conversion by set the ADCCON. 0 to ' 1 '.
4. When conversion has been completed, the EOC flag is set to ' 1 '.
5. The converted digital value is loaded to the ADCDATL, ADCDATH register, and then the ADC module enters an idle state.
6. The digital conversion result can now be read from the ADDATAH, ADDATAL register.

If the chip enters to STOP mode in conversion process, there will be a leakage current path in A/D block. The ADC operation must be finished before the chip enters STOP mode.
※ There is not sampling/hold circuit in ADC. Therefore, it is important that any fluctuations in the analog level at the ADC0-ADC9 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

< Figure 6-1 Analog to Digital Converter Block Diagram >

< Figure 6.2 A/D Conversion Timing Diagram >
※ Maximum ADC Input Clock is 4 MHz .

7. I/O Ports

The TM59PA40 has three I/O port, PORTA, PORTB and PORTC (MAX 18 Pin). These ports can be accessed directly by writing or reading port data register.

PORT	Bit	Pin No	Pin Description	Input/ Output	$\begin{gathered} \text { PIN } \\ \text { Type } \end{gathered}$
PORT A	0	19	Schmitt trigger input, Push-pull output, ADC0, External Interrupt 0	I/O	C
	1	18	Schmitt trigger input, Push-pull output, ADC1, External Interrupt 1	I/O	
	2	17	Schmitt trigger input, Push-pull output, ADC2	I/O	
	3	16	Schmitt trigger input, Push-pull output, ADC3	I/O	
	4	15	Schmitt trigger input, Push-pull output, ADC4	I/O	
	5	14	Schmitt trigger input, Push-pull output, ADC5	I/O	
	6	13	Schmitt trigger input, Push-pull output, ADC6, PWM0	I/O	
	7	12	Schmitt trigger input, Push-pull output, ADC7, PWM1	1/O	
PORT B	0	2	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	D
	1	3	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	
	2	4	Schmitt-trigger input	1	A
PORT C	0	5	Schmitt-trigger input, Push-pull output, Open-drain Output, Timer0 match Output	I/O	C
	1	6	Schmitt-trigger input, Push-pull output, Open-drain Output, Buzzer Out	I/O	B
	2	7	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	
	3	8	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	
	4	9	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	
	5	10	Schmitt-trigger input, Push-pull output, Open-drain Output, ADC9	I/O	C
	6	11	Schmitt-trigger input, Push-pull output, Open-drain Output, ADC8, Clock Out	I/O	

< Table 7-1 Port Configuration Overview >

Pin Circuit

< Figure 7-1 Pin Circuit Type A >

< Figure 7-2 Pin Circuit Type B >

< Figure 7-3 Pin Circuit Type C >

< Figure 7-4 Pin Circuit Type D >

PORTA

Port A has 8-bit I/O Pins. It can be used for normal I/O (Schmitt trigger input, push-pull output, open-drain output) or some alternative function (ADC, External interrupt 0, 1, PWM output).

PORTB

Port B has 3-bit I/O Pins. PortB.1-0 can be used clock input or normal I/O. If the PortB.1-0 pins are used as external clock Input, the control register (PBCON) must be set to output port to prevent current consumption. PortB. 2 can be used for input only pin.

PORTC

Port C has 7-bit I/O Pins. It can be used for normal I/O (Schmitt trigger input, push-pull output, open-drain output) or some alternative function (ADC, Clock output, T0 clock output, Buzzer out).

8. Buzzer Out

The TM59PA40 has Buzzer driver that consist of 6-bit counter, clock divider, control register. It generates 50% duty square-wave and the frequency cover a wide range.

< Figure 8-1 Block Diagram >
It can be enabled by setting the bit PC. 1 as Buzzer out function. When the Buzzer Out is enabled, the 6-bit counter is cleared and PC. 1 output status is ' 0 ' and start counting up. If the counter value is match up to period data (BZCON.5-0), then PC. 1 output status is toggle and the counter is cleared. Also, the counter is cleared by 6-bit counter overflow. BZCON.5-0 determines output frequency. Frequency calculation is as follows.
$F_{B Z}=f_{\text {osc }} / 2 /$ Prescaler Ratio/(Period Data +1)

Example 8-1> Output frequency calculation
CPU Clock (fosc) : 8.192 MHz
Prescaler Ratio (BZCON.7-6) : 11 (fosc $/ 64$),
Period Data (BZCON.5-0) : 9
$F_{B Z} 8.192 \mathrm{M} / 2 / 64 /(9+1)=6400(\mathrm{~Hz})$

Example 8-2> Sample Code

CLRF	PCCONL	; Clear PCCONL
MOVLW	11001001b	; fosc/64, Period Data 9 (6.4 KHz Output)
MOVWF	BZCON	; Set Buzzer 6.4KHz Output
BSF	PCCONL, 2	; Set PORTC.1 Buzzer Out. Buzzer Enable
\cdot		
\cdot		
BCF	PCCONL, 2	Set PORTC.1 Input mode. Buzzer Disable

< Figure 8-2 Timing Diagram >

9. Electrical Characteristics

9.1 Absolute Maximum Ratings $\left(\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}\right)$

Parameter	Rating	
Supply voltage	-0.3 to +5.5	
Input voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	
Output voltage	-0.3 to $\mathrm{V}_{\mathrm{DD}}+0.3$	V
Output current high per 1 PIN	-25	
Output current high per all PIN	-80	mA
Output current low per 1 PIN	+30	
Output current low per all PIN	+150	V
Maximum Operating Voltage	5.5	
Operating temperature	-45 to +85	${ }^{\circ} \mathrm{C}$
Storage temperature	-65 to +150	

9.2 DC Characteristics $\left(\mathrm{T}_{\mathrm{A}}=-45^{\circ} \mathrm{C}\right.$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Conditions		Min	Typ	Max	Unit
Input High Voltage	$\mathrm{V}_{\mathrm{H} 1}$	Except $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUt }}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 5.5 V	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	$V_{\text {DD }}$	V
	$\mathrm{V}_{\mathrm{IH} 2}$	$\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$		$\mathrm{V}_{\mathrm{DD}}-0.1$			
Input Low Voltage	$\mathrm{V}_{\text {IL1 }}$	Except $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 5.5 V	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
	$\mathrm{V}_{\text {IL2 }}$	$\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUt }}$				0.1	
Output High Voltage ${ }^{\text {(NOTE 1) }}$	V_{OH}	PORT A,B,C	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	$V_{D D}-1.5$	$V_{D D}-0.4$	-	V
Output Low Voltage ${ }^{\text {(NOTE 2) }}$	$\mathrm{V}_{\text {OL }}$	PORT A,B,C	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	-	0.4	2.0	V
Input Leakage Current(pin high)	$\mathrm{I}_{\text {ILH }}$	Except $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUt }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$	-	-	1	uA
		$\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUt }}$	$\mathrm{V}_{\text {IN }}=\mathrm{V}_{\mathrm{DD}}$			20	
Input Leakage Current(pin low)	$\mathrm{I}_{\text {ILL }}$	Except $\mathrm{X}_{\text {IN }}, \mathrm{X}_{\text {OUT }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$	-	-	-1	uA
		$\mathrm{X}_{\text {IN }}$ and $\mathrm{X}_{\text {OUt }}$	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$			-20	
Output Leakage Current(pin high)	lolh	All output pins	$\mathrm{V}_{\text {OUT }}=\mathrm{V}_{\text {DD }}$	-	-	2	uA
Output Leakage Current(pin low)	$\mathrm{I}_{\text {OLL }}$	All output pins	$\mathrm{V}_{\text {OUT }}=0 \mathrm{~V}$	-	-	-2	uA
Power Supply Current	$I_{\text {D }}$	Run 10 MHz	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	-	7	12	mA
		Run 3 MHz	$\mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$		2	4	
		Stop mode	$\mathrm{V}_{\mathrm{DD}}=4.5$ to 5.5 V	-	100	200	uA
			$\mathrm{V}_{\mathrm{DD}}=2.6 \mathrm{~V}$		30	60	
Pull-Up Resistor	R_{P}	$\begin{gathered} \mathrm{V}_{\mathrm{IN}}=0 \mathrm{~V} \\ \text { Ports } \mathrm{A}, \mathrm{~B}, \mathrm{C} \end{gathered}$	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	25	50	100	$\mathrm{k} \Omega$
Pull-Down Resistor	R_{P}	$\mathrm{V}_{\text {IN }}=0 \mathrm{~V}$ Ports B	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	25	50	100	

NOTE:

1. Output current high $=-10 \mathrm{~mA}$
2. Output current Low $=25 \mathrm{~mA}$
9.3 Clock Timing Constants ($\mathrm{T}_{\mathrm{A}}=-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}$)

Oscillator	Condition	Min	Typ	Max	Unit
External Clock	$\mathrm{V}_{\mathrm{DD}}=2.5$ to 5.5 V	1	-	12	MHz
	$\mathrm{V}_{\mathrm{DD}}=2.0$ to 5.5 V	1	-	4	
External RC ${ }^{\text {(NOTE 1) }}$	$\mathrm{V}_{\mathrm{DD}}=4.75$ to 5.25 V	-	4	-	
Internal RC ${ }^{\text {(NOTE 2) }}$	$\mathrm{V}_{\mathrm{DD}}=4.75$ to 5.25 V		2.9		

NOTE:

1. Tolerance : $\pm 10 \%$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$
2. Tolerance : $\pm 20 \%$ at $\mathrm{T}_{\mathrm{A}}=25^{\circ} \mathrm{C}$

External Oscillator Circuit (Crystal or Ceramic)

External R-C Oscillator
9.4 External Interrupt Characteristics ($\mathrm{T}_{\mathrm{A}}=-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.5 V)

Parameter	Conditions	Min	Typ	Max	Unit
Input High Voltage	-	$0.8 \mathrm{~V}_{\mathrm{DD}}$	-	V_{DD}	V
Input Low Voltage	-	-	-	$0.2 \mathrm{~V}_{\mathrm{DD}}$	V
External Interrupt Input Width($\mathrm{t}_{\mathrm{INT}}$)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V} \pm 10 \%$	-	200	-	ns

9.5 A/D Converter Electrical Characteristics ($\mathrm{T}_{\mathrm{A}}=-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to $5.5 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V}$)

Parameter	Conditions	Min	Typ	Max	Unit s
Total Accuracy	$\begin{gathered} \mathrm{V}_{\mathrm{DD}}=5.12 \mathrm{~V}, \mathrm{~V}_{\mathrm{SS}}=0 \mathrm{~V} \\ \mathrm{CPU} \text { clock }=10 \mathrm{MHz} \end{gathered}$	-	-	± 3	LSB
Integral Non-Linearity		-	-	± 2	
Differential Non-Linearity		-	-	± 1	
Offset Error of Top		-	± 1	± 3	
Offset Error of Bottom		-	± 1	± 2	
Max Input Clock ($\mathrm{f}_{\mathrm{ADC}}$)	-	-	-	4	MHz
Conversion Time ${ }^{\text {(NOTE 1) }}$	$\mathrm{f}_{\text {ADC }}=4 \mathrm{MHz}$	-	20	-	$\mu \mathrm{s}$
Analog Input Voltage	-	$\mathrm{V}_{\text {Ss }}$	-	$V_{D D}$	V
Analog Input Impedance	-	2	-	-	M ת
Analog Input Current	$V_{D D}=5 \mathrm{~V}$	-	-	10	$\mu \mathrm{A}$
Analog Block Current ${ }^{(N O T E}$ 2)	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$	-	1	3	mA
	$\mathrm{V}_{\mathrm{DD}}=3 \mathrm{~V}$	-	0.5	1.5	mA
	$\mathrm{V}_{\mathrm{DD}}=5 \mathrm{~V}$ stop mode	-	100	500	nA

NOTE:

1. "Conversion time" is the time required from the moment a conversion operation starts until it ends.
2. $I_{A D C}$ is operating current during A / D conversion.
9.6 LVR Circuit Characteristics ($\mathrm{T}_{\mathrm{A}}=-45^{\circ} \mathrm{C}$ to $+85^{\circ} \mathrm{C}, \mathrm{V}_{\mathrm{DD}}=2.0 \mathrm{~V}$ to 5.5 V)

Parameter	Symbol	Min	Typ	Max	Unit
LVR reference Voltage			2.0		
	V $_{\text {LVR }}$	-	2.3	-	V
			3.0		
LVR Hysteresis Voltage	V $_{\text {HYST }}$	-	± 0.3	-	V
Low Voltage	$\mathrm{t}_{\mathrm{LVR}}$	1	-	-	$\mu \mathrm{s}$
Detection time			-1		

10. Packaging Information

10.1 20-DIP Package Dimension

20 lead, Dual In-line Package
Dimension in Millimeters

10.2 20-SOP Package Dimension 20 lead, Small Outline Package
Dimension in Millimeters

SUFACE ROUGHNESS: $\nabla /$
10.3 20-SSOP Package Dimension

20 lead, Shrink Small Outline Package
Dimension in Millimeters

10.4 16-DIP Package Dimension

16 lead, Dual In-line Package
Dimension in Millimeters

Symbol	Dimension In inch			Dimension in mm		
	Min	Norn	Max	Min	Norr	Max
A			2.178	-		4.46
A1	0.010	-	-	0.28	-	-
A2	0.126	0.150	[2136	318	3.30	3.43
B	0.1018	0.1018	0022	041	0.48	0.58
B1	0.088	0.060	0.084	1.47	1.12	1.83
C	0.038	0.010	0.014	0.20	0.25	0.38
D	-	0.750	0.770	-	18.05	18.56
E	0.280	0.300	0.310	7.57	7.52	7.87
E1	0.245	0.250	0.235	6.22	6.35	6.410
e1	0.000	0.100	L2.119	2.29	2.54	2.78
L	0.120	0.180	[144a	3.05	3.36	3.58
α	0°	-	15:	0^{*}	-	15:
AA	0.335	0.355	12.375	8.51	9.02	Q.53
5		-	0.040	-	-	1.02

Note:
1.Dimension D Max \& S Include mold flash or the bar burra.
2.DImension E1 daes nat include interlead flash
3.DImenaion D \& E1 include mold miamateh and are
datermined at the mold parting line.
4.Dimension B1 does not include damber protrusion/ hitrusion.
5.Controlling dimenalon: Inch
6.General apparance que. shiculd ba based an fina vizual hispectlon zpec.
10.5 16-SOP Package Dimension

16 lead, Small Outline Package
Dimension in Millimeters

10.6 16-SSOP Package Dimension

16 lead, Shrink Small Outline Package
Dimension in Millimeters

