

TM59PA40

TM59PA40

User's Manual

tenx technology, inc.

Contents

Chapter 1	Overview	2
	1.1 Feature	2
	1.2 Clock Scheme and Instruction Cycle1.3 Addressing Mode	5 5
	1.4 ALU and Working Register (W)	6
	1.5 Status Register (STAT)	6
	1.6 Interrupt	7
	1.7 Reset.1.8 Power Down Mode.	7 8
	1.9 System Config Register	8
	1.10 Instruction Set	9
Chapter 2	Control Register	20
Chapter 3	Timer	37
Chapter 4	PWM 0	40
Chapter 5	PWM 1	42
Chapter 6	Analog-Digital Converter	44
Chapter 7	I/O Ports	46
Chapter 8	Buzzer Out	50
Chapter 9	Electrical Characteristics	52
Chapter 10	Packaging Information	55
	10.1 20-DIP Package Dimension	55
	10.2 20-SOP Package Dimension	56
	10.320-SSOP Package Dimension10.416-DIP Package Dimension	57 58
	10.5 16-SOP Package Dimension	59
	10.6 16-SSOP Package Dimension	60

Chapter 1 Overview

1.1 FEATURE

- 1. Program Memory : 4K x 14 bits OTP ROM
- **2.** RAM: 192 x 8 bits
- 3. STACK: 6 Levels
- 4. I/O ports: Three I/O ports (Max 18 pins) and Bit programmable ports
- 5. Timer/counter: One 8-bit timer/counter with time interval modes
- 6. Watchdog Timer: On chip WDT based on System oscillator
- 7. Power-On Reset & Watchdog timer overflow Reset & Low Voltage reset
- 8. Oscillation Frequency:
 - 1 MHz to 12 MHz external crystal oscillator
 - Internal RC: 2.9 MHz (typ.), 480KHz (typ.) in VDD = 5 V
 - External RC
- 9. High-speed PWM:
 - 8-bit PWM 1-ch, 6-bit base + 2-bit extension (Max: 187 kHz)
 - 10-bit PWM 1-ch, 8-bit base + 2-bit extension (Max: 47 kHz)
- **10.** Operation Voltage: LVR to 5.5V
- **11.** Instruction set: 35 Instructions
- **12.** Execution Time: 167 ns at 12 MHz f_{OSC}
- 13. A/D Converter: 10-bit conversion resolution with 10-ch analog input pins (MAX)
- 14. Interrupts: 5 interrupt sources with one vector with one interrupt level
- 15. Buzzer Out: Frequency Selectable Buzzer Output
- 16. System Config Option: LVR Level Selection and Clock Source Selection
- 17. Reset vector: 000H
- 18. Interrupt vector: 001H
- 19. Power Down mode
- 20. Package Types:
 - 20-SOP, SSOP, DIP
 - 16-SOP, SSOP, DIP

<Figure 1-1. System Block Diagram>

<Figure 1-2. Pin Assignment Diagram _ Package Types: 20-Pin SOP/DIP/SSOP>

<Figure 1-3. Pin Assignment Diagram _ Package Types: 16-Pin SOP/DIP/SSOP>

Name	In/Out	Pin Description	Shared Function
PA.0-PA.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull output. Pull-up resistors are assignable by software. PortA pins can also be used as A/D converter input, PWM output or external interrupt input.	ADC0-ADC7 INT0/INT1 PWM0/PWM1
PB.0–PB.1	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull, open-drain output. Pull-up resistors or pull-down resistors are assignable by software.	X _{IN,} X _{OUT}
PB.2		Schmitt trigger input port	-
PC.0–PC.6	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull, open-drain output. Pull-up resistors are assignable by software.	ADC8-9/CLO T0OUT/BUZZER
$X_{IN, X_{OUT}}$	-	Crystal/Ceramic, or RC oscillator signal for system clock.	PB.0–PB.1
V _{DD,} V _{SS}	Р	Voltage input pin and ground	-
CLO	0	System clock output port	PC.6
INT0–INT1	I	External interrupt input port	PA.0, PA.1
PWM0	0	8-Bit high speed PWM output	PA.6
PWM1	0	10-Bit high speed PWM output	PA.7
TOOUT	0	Timer0 match output	PC.0
ADC0-ADC9	Ι	A/D converter input	PA.0–PA.7 PC.5–PC.6

<Table 1-1. PIN Description> < I: Input; O: Output; I/O: Bi-direction; P: Power >

1.2 Clock Scheme and Instruction Cycle

The clock input (X_{IN}) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle.

< Figure 1-4. Clock/Instruction cycle and pipeline >

Branch instructions take two cycle since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being feched and then executed.

1.3 Addressing Mode

The Programming Counter is 12-bit wide capable of addressing a 4K x 14 program ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 12 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[11:8] keeps unchanged. The STACK is 12-bit wide and 6-level in depth. The CALL instruction and Hardware interrupt will push STACK level in order, While the RET/RETI/RETLW instruction pops the STACK level in order.

The data memory is partitioned into two banks, which contain the General Purpose Data Memory and the Special Function Registers (SFR). STATUS.4 is the bank select bits. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank (00h-1Fh) are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. SFR area is mirrored in all banks for code reduction and quicker access. The first half of RAM (00h – 3Fh) is bit-addressable.

Data memory can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). Reading INDF itself indirectly (FSR=0) will produce 00h. Writing to the INDF register indirectly results in a no-operation.

< Figure 1-5. Address space >

1.4 ALU and Working (W) Register

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry(C), Digit Carry(DC), and Zero(Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

1.5 STATUS Register

This register contains the arithmetic status of ALU and the Bank select for RAM. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS Register because these instructions do not affect those bits.

	1							
STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	-	-	_	0	_	0	0	0
R/W	_	-	_	R/W	_	R/W	R/W	R/W
Bit		Description						
7-5	Not Used	ot Used (Must be set to 0)						
4	0: Page	RAM: SRAM Bank Selection Bit D: Page 0 1: Page 1						
3	Not Used	Not Used (Must be set to 0)						
2	0: the re 1: the re	Zero Flag (Z) 0: the result of a logic operation is not zero 1: the result of a logic operation is zero Decimal Carry Flag or Decimal/Borrow Flag (DC)						
	Boomia	ADD instruction SUB instruction						
1	1: a carry from the low nibble bits of the result occurred 1: no borrow 0: no carry 0: a borrow from the low nibble I of the result occurred					ibble bits		
	Carry Fla	Carry Flag(C) or Borrow Flag						
0		ADD ins	struction			SUB ins	struction	
0	1: a carr	y occurre	d from the	e MSB	1: no bo	rrow		
	0: no ca	rry			0: a bori	row occur	red from t	he MSB
<t< td=""><td>able 1-2.</td><td>STATUS</td><td>- Syster</td><td>n Flags R</td><td>legister (A</td><td>ddress: C</td><td>)3H)></td><td></td></t<>	able 1-2.	STATUS	- Syster	n Flags R	legister (A	ddress: C)3H)>	

1.6 Interrupt

The TM59PA40 has 1 level, 1 vector and 5 sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual flag. Because TM59PA40 has only 1 vector, there is not a interrupt priority register. The interrupt priority is determined by F/W.

< Figure 1-6. Interrupt Function Diagram >

If the corresponding interrupt enable bit has been set (INTCON), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, A "CALL 0001" instruction is inserted to CPU, and the i-flag is set to prevent recursive interrupt nesting. The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is edge trigged. F/W must clear the interrupt event register while serves the interrupt routine.

1.7 Reset

The TM59PA40 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- Watchdog Reset

< Figure 1-7. Reset Circuit Diagram >

After the Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. And the clock source, LVR level is selected by SYSL register value. After the clock source selection, clock oscillation starts, and oscillation stabilization time must be needed. The minimum required oscillation stabilization time is approximately 2.5 ms (f_{OSC} = 10 MHz). The Low Voltage Reset features static reset when supply voltage is below a reference value. The four levels of reference voltage can be configured in SYSL register.

The Watchdog Timer is disabled after Reset. F/W can use the CLRWDT instruction to clear and enable the Watchdog Timer. If once enabled, the Watchdog Timer overflow and generate a chip reset signal if no CLRWDT executed in a period of 2^{21} oscillator's cycle (0.25 Second for 8.192MHz crystal). The Watchdog Timer does not work in Power-down mode to provide wake-up function. It is only designed to prevent F/W goes into endless loop.

1.8 Power-Down Mode

The Power-down mode is activated by SLEEP instruction. During the Power-down mode, the crystal clock oscillation stops to minimize power consumption and all the peripherals are not working. Therefore, The Power down mode can be terminated by Reset or enabled external Interrupts (External Interrupt 0, 1). When the Power down mode is released, the clock circuit requires oscillation stabilization time also.

PWRDN	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	_	Ι	_	_	_	_	_	_
R/W	-	-	_	_	_	_	-	-
Bit				Desci	ription			
7-0	Power Do	Power Down Control Register						
	This regis writing ar "MOVWF	ny value i	nto this re					

<Table 1-3. PWRDN — Power Down Control Register (Address: 0AH)>

1.9 System Config Register

The System Config Register (SYSL) is the ROM option for initial condition of the MCU. The address 2000H is virtual address which is not reachable in F/W. It can be written by MDS and system use only. You can config clock source, LVR reference voltage control by SYSL register. The default value of SYSL is 3FFFh. The 13th bit is code protection selection bit. If write this bit to 0, the data of ROM will be all 3FFFh, when user read ROM.

NAME	Bit 13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SYSL	_	-	-	_	-	_	_	_	_
Reset Value	1	1	1	1	1	1	1	1	1
Bit		Description							
13	Code p	Code protection selection bit							
	1: No p	rotect							
	0: Code	0: Code protection							
7	Not Us	Not Used (Must Set be '1')							
6-5	CSS1	CSS0	CSS1 [,]	~0Clock	Source S	Selectior	Bit		
	0	0	Extern	al crysta	l / ceram	nic oscilla	ator		
	0	1	Extern	al RC					
	1	0	Interna	al RC (0.	48 MHz	in V _{DD} =	5 V)		
	1	1	Interna	al RC (2.	9 MHz ir	n V _{DD} = 5	V)		
4-0			I Selection	on Byte					
	110	001	2.0V						
	110	010) 2.3V						
	100	10001 3.0V							
	011	11	3.9V						
<ta< td=""><td>able 1-4.</td><td>SYSL -</td><td> Systen </td><td>n Config</td><td>Register</td><td>(Addres</td><td>s : 2000</td><td>H)></td><td></td></ta<>	able 1-4.	SYSL -	 Systen 	n Config	Register	(Addres	s : 2000	H)>	

1.10 Instruction Set

Each instruction is a 14-bit word divided into an OPCODE, which specified the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents address designator and "d" represents destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction. For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field. 0 : Working register 1 : Register file
W	Working Register
Z	Zero Flag
С	Carry Flag
DC	Decimal Carry Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
	Option Field
()	Contents
	Bit Field
\leftarrow	Assign direction

< Table 1-5. OP-CODE Field Description >

Mnemonic ADDWF		Op Code		Flag Affect	Description
ADDWF		Byte-Orient		egister Instru	
	f,d	00 0111 dfff ffff	1	C,DC,Z	Add W and "f"
ANDWF	f,d	00 0101 dfff ffff	1	Z	AND W with "f"
CLRF	f	00 0001 1fff ffff	1	Z	Clear "f"
CLRW	· ·	00 0001 0100 0000	1	Z	Clear W
COMF	f,d	00 1001 dfff ffff	1	Z	Complement "f"
DECF	f,d	00 0011 dfff ffff	1	Z	Decrement "f"
DECFSZ	f,d	00 1011 dfff ffff	1 or 2	-	Decrement "f", skip if zero
INCF	f,d	00 1010 dfff ffff	1	Z	Increment "f"
INCFSZ	f,d	00 1111 dfff ffff	1 or 2	-	Increment "f", skip if zero
IORWF	f,d	00 0100 dfff ffff	1	Z	OR W with "f"
MOVFW	f	00 1000 Offf ffff	1		Move "f" to "w"
MOVWF	f	00 0000 1fff ffff	1	-	Move W to "f"
RLF	f.d	00 1101 dfff ffff	1	С	Rotate left "f" through carry
RRF	f,d	00 1100 dfff ffff	1	C	Rotate right "f" through carry
SUBWF	f,d	00 0010 dfff ffff	1	C,DC,Z	Subtract W from "f"
SWAPF	f,d	00 1110 dfff ffff	1	-	Swap high/low nibble of "f"
TESTZ	f	00 1000 1fff ffff	1	Z	Test if "f" is zero
XORWF	f,d	00 0110 dfff ffff	1	Z	XOR W with "f"
	<u> </u>	Bit-Oriente	d File Re	gister Instruc	ction
BCF	f,b	01 000b bbff ffff	1	-	Clear "b" bit of "f"
BSF	f,b	01 001b bbff ffff	1	-	Set "b" bit of "f"
BTFSC	f,b	01 010b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if clear
BTFSS	f,b	01 011b bbff ffff	1 or 2	-	Test "b" bit of "f", skip if set
		Literal a	and Cont	rol Instructio	n
ADDLW	k	01 1100 kkkk kkkk	1	C,DC,Z	Add Literal "k" to W
ANDLW	k	01 1011 kkkk kkkk	1	Z	AND Literal "k" with W
CALL	k	10 kkkk kkkk kkkk	2	-	Call subroutine "k"
CLRWDT		00 0000 1000 1001	1	-	Clear and enable Watch Dog Timer
GOTO	k	11 kkkk kkkk kkkk	2	-	Jump to branch "k"
IORLW	k	01 1010 kkkk kkkk	1	Z	OR Literal "k" with W
MOVLW	k	01 1001 kkkk kkkk	1	-	Move Literal "k" to W
NOP		00 0000 0000 0000	1	-	No operation
RET		00 0000 0100 0000	2	-	Return
RETI		00 0000 0110 0000	2	-	Return from interrupt
RETLW	k	01 1000 kkkk kkkk	2	-	Return, place Literal "k" in W
SLEEP		00 0000 1000 1010	1	-	Go into standby mode, Clock oscillation stops
XORLW	k	01 1111 kkkk kkkk	1	Z	XOR Literal "k" with W

< Table 1-6. Instruction Summary >

ADDLW	Add Literal "k" and W	
Syntax	ADDLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) + k$	
Status Affected	C, DC, Z	
OP-Code	01 1100 kkkk kkkk	
Description		added to the eight-bit literal 'k' and the
	result is placed in the W register.	
Cycle	1	
Example	ADDLW 0x15	B : W = 0x10
_//dp.ro		A: W = 0x25
ADDWF	Add W and 'f'	
Syntax	ADDWF f[,d]	
Operands	f : 00h ~ 7Fh d : 0, 1	
Operation	(Destination) \leftarrow (W) + (f)	
Status Affected	C, DC, Z	
OP-Code	00 0111 dfff ffff	
Description	Add the contents of the W register	with register 'f'. If 'd' is 0, the result is
	stored in the W register. If 'd' is 1,	the result is stored back in register 'f'.
Cycle	1	
Example	ADDWF FSR, 0	B : W = 0x17, FSR = 0xC2
		A : W = 0xD9, FSR = 0xC2
	Logical AND Literal "k" with W	
ANDLW		
Our set and		
Syntax	ANDLW k	
Operands	ANDLW k k : 00h ~ FFh	
Operands Operation	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f)	
Operands Operation Status Affected	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z	
Operands Operation Status Affected OP-Code	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk	
Operands Operation Status Affected	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN	D'ed with the eight-bit literal 'k'. The
Operands Operation Status Affected OP-Code Description	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk	D'ed with the eight-bit literal 'k'. The
Operands Operation Status Affected OP-Code Description Cycle	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1	-
Operands Operation Status Affected OP-Code Description	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B	-
Operands Operation Status Affected OP-Code Description Cycle Example	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle Example	ANDLW k k : 00h ~ FFh (W) ← (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A AND W with f	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A ANDWF f [,d]	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A AND W with f ANDWF f [,d] f : 00h ~ 7Fh d : 0, 1	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B ANDLW 0x5F B ANDWF f [,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f)	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation Status Affected	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B ANDLW 0x5F B ANDWF f [,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f) Z	: W = 0xA3
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation Status Affected OP-Code	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A ANDLW 0x5F B A ANDWF f [,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f) Z 00 0101 dfff ffff	: W = 0xA3 : W = 0x03
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation Status Affected OP-Code Description	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A ANDLW 0x5F B A ANDWF f [,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f) Z 00 0101 dfff ffff	: W = 0xA3 : W = 0x03
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation Status Affected OP-Code Description Cycle	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A ANDWF f[,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f) Z 00 0101 dfff ffff AND the W register with register 'fr register. If 'd' is 1, the result is stor 1	: W = 0xA3 : W = 0x03 '. If 'd' is 0, the result is stored in the W red back in register 'f'.
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation Status Affected OP-Code Description	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A ANDW 0x5F B A ANDWF f[,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f) Z 00 0101 dfff ffff AND the W register with register 'f register. If 'd' is 1, the result is stor 1 ANDWF FSR, 1 B	: W = 0xA3 : W = 0x03 . If 'd' is 0, the result is stored in the W red back in register 'f'. : W = 0x17, FSR = 0xC2
Operands Operation Status Affected OP-Code Description Cycle Example ANDWF Syntax Operands Operation Status Affected OP-Code Description Cycle	ANDLW k k : 00h ~ FFh (W) \leftarrow (W) 'AND' (f) Z 01 1011 kkkk kkkk The contents of W register are AN result is placed in the W register. 1 ANDLW 0x5F B A ANDW 0x5F B A ANDWF f[,d] f : 00h ~ 7Fh d : 0, 1 (Destination) \leftarrow (W) 'AND' (f) Z 00 0101 dfff ffff AND the W register with register 'f register. If 'd' is 1, the result is stor 1 ANDWF FSR, 1 B	: W = 0xA3 : W = 0x03 '. If 'd' is 0, the result is stored in the W red back in register 'f'.

BCF	Clear "b" bit of "f"	
Syntax Operands Operation Status Affected OP-Code Description Cycle	BCF f [,b] f: 00h ~ 3Fh b: 0 ~ 7 (f.b) \leftarrow 0 - 01 000b bbff ffff Bit 'b' in register 'f' is cleared. 1	
Example	BCF FLAG_REG, 7	B : FLAG_REG = 0xC7 A : FLAG_REG = 0x47
BSF	Set "b" bit of "f"	
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	BSF f [,b] f: 00h ~ 3Fh b: 0 ~ 7 (f.b) \leftarrow 1 - 01 001b bbff ffff Bit 'b' in register 'f' is set. 1 BSF FLAG_REG, 7	B : FLAG_REG = 0x0A A : FLAG_REG = 0x8A
BTFSC	Test 'b' bit of 'f', skip if clear	(0)
Syntax Operands Operation Status Affected OP-Code Description		the next instruction is executed. If bit 'b' in nstruction is discarded, and a NOP is
Cycle	executed instead, making this a 1 or 2	a 2nd cycle instruction.
Example	LABEL1 BTFSC FLAG, 1 TRUE GOTO SUB1 FALSE	B : PC = LABEL1 A : if FLAG.1 = 0, PC = FALSE if FLAG.1 = 1, PC = TRUE
BTFSS	Test "b" bit of "f", skip if set(1)
Syntax Operands Operation Status Affected OP-Code Description Cycle Example		the next instruction is executed. If bit 'b' in nstruction is discarded, and a NOP is

CALL	Call subroutine "k"	
Syntax Operands Operation Status Affected	CALL k K : 00h ~ FFFh Operation: TOS ← (PC)+ 1, P -	C.11~0 ← k
OP-Code Description	The eleven-bit immediate add a two-cycle instruction.	ddress (PC+1) is pushed onto the stack. ress is loaded into PC bits <11:0>. CALL is
Cycle Example	2 LABEL1 CALL SUB1	B : PC = LABEL1 A : PC = SUB1, TOS = LABEL1+1
CLRF	Clear f	
Syntax Operands Operation Status Affected OP-Code Description	CLRF f f : 00h ~ 7Fh (f) \leftarrow 00h, Z \leftarrow 1 Z 00 0001 1fff ffff The contents of register 'f' are	cleared and the Z bit is set.
Cycle Example	1 CLRF FLAG_REG	B : FLAG_REG = 0x5A A : FLAG_REG = 0x00, Z = 1
CLRW	Clear W	
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	CLRW - (W) ← 00h, Z ← 1 Z 00 0001 0100 0000 W register is cleared and Zero 1 CLRW	bit (Z) is set. B : W = 0x5A A : W = 0x00, Z = 1
CLRWDT	Clear Watchdog Timer	
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	CLRWDT - WDTE ← 00h - 00 0000 1000 1001 CLRWDT instruction enables a 1 CLRWDT	and resets the Watchdog Timer. B : WDT counter = ? A : WDT counter = 0x00
COMF	Complement f	
Syntax Operands Operation	COMF f [,d] f : 00h ~ 7Fh, d : 0, 1 (destination) ← (Ī̄)	
Status Affected OP-Code Description	Z 00 1001 dfff ffff	complemented. If 'd' is 0, the result is It is stored back in register 'f'.
Cycle Example	1 COMF REG1,0	B : REG1 = 0x13 A : REG1 = 0x13, W = 0xEC

DECF	Decrement f	
Syntax	DECF f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1	
Status Affected	Z 00 0011 dfff ffff	
OP-Code Description		the result is stored in the W register. If 'd'
Cycle	is 1, the result is stored back in r	
Example	•	B : CNT = 0x01, Z = 0
Example		A : CNT = 0x00, Z = 1
DECFSZ	Decrement f Skin if 0	
Syntax	Decrement f, Skip if 0 DECFSZ f [,d]	
Operands	f : 00h ~ 7Fh, d : 0, 1	
Operation	(destination) \leftarrow (f) - 1, skip next i	instruction if result is 0
Status Affected	-	
OP-Code	00 1011 dfff ffff	
Description		ecremented. If 'd' is 0, the result is placed
		esult is placed back in register 'f'. If the
		executed. If the result is 0, then a NOP is
	executed instead, making it a 2 c	cycle instruction.
Cycle	1 or 2	
Example	LABEL1 DECFSZ CNT, 1 GOTO LOOP	B : PC = LABEL1 A : CNT = CNT – 1
	CONTINUE	if CNT=0, PC = CONTINUE
	SOLUTION	
		if CNT≠0, PC = LABEL1+1
		if CNT≠0, PC = LABEL1+1
GOTO	Unconditional Branch	if CNT≠0, PC = LABEL1+1
Syntax	GOTO k	if CNT≠0, PC = LABEL1+1
Syntax Operands	GOTO k k : 00h ~ FFFh	if CNT≠0, PC = LABEL1+1
Syntax Operands Operation	GOTO k	if CNT≠0, PC = LABEL1+1
Syntax Operands Operation Status Affected	GOTO k k : 00h ~ FFFh PC.11~0 ← k -	if CNT≠0, PC = LABEL1+1
Syntax Operands Operation Status Affected OP-Code	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk	
Syntax Operands Operation Status Affected	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl	h. The 12-bit immediate value is loaded
Syntax Operands Operation Status Affected OP-Code	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk	h. The 12-bit immediate value is loaded
Syntax Operands Operation Status Affected OP-Code Description	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1
Syntax Operands Operation Status Affected OP-Code Description Cycle	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1	h. The 12-bit immediate value is loaded wo-cycle instruction.
Syntax Operands Operation Status Affected OP-Code Description Cycle	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands	GOTO k k : 00h ~ FFFh PC.11~0 ← k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation Status Affected	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 Increment f INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1 Z	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation Status Affected OP-Code	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1 Z 00 1010 dfff ffff	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1 A : PC = SUB1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation Status Affected	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1 Z 00 1010 dfff ffff The contents of register 'f' are ind	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1 A : PC = SUB1 cremented. If 'd' is 0, the result is placed
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation Status Affected OP-Code Description	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1 Z 00 1010 dfff ffff The contents of register 'f' are ind in the W register. If 'd' is 1, the reference	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1 A : PC = SUB1 cremented. If 'd' is 0, the result is placed
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation Status Affected OP-Code Description Cycle	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1 Z 00 1010 dfff ffff The contents of register 'f' are ind in the W register. If 'd' is 1, the reference	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1 A : PC = SUB1
Syntax Operands Operation Status Affected OP-Code Description Cycle Example INCF Syntax Operands Operation Status Affected OP-Code Description	GOTO k k : 00h ~ FFFh PC.11~0 \leftarrow k - 11 kkkk kkkk kkkk GOTO is an unconditional brancl into PC bits <11:0>. GOTO is a t 2 LABEL1 GOTO SUB1 INCF f [,d] f : 00h ~ 7Fh (destination) \leftarrow (f) + 1 Z 00 1010 dfff ffff The contents of register 'f' are ind in the W register. If 'd' is 1, the ref 1 INCF CNT, 1	h. The 12-bit immediate value is loaded wo-cycle instruction. B : PC = LABEL1 A : PC = SUB1 cremented. If 'd' is 0, the result is placed

INCFSZ	Increment f, Skip if 0
Syntax	INCFSZ f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	(destination) \leftarrow (f) + 1, skip next instruction if result is 0
Status Affected	-
OP-Code	00 1111 dfff ffff
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, a NOP is executed instead, making it a 2 cycle instruction.
Cycle	1 or 2
Example	LABEL1INCFSZ CNT, 1 GOTO LOOPB : PC = LABEL1 A : CNT = CNT + 1 if CNT=0, PC = CONTINUE if CNT \neq 0, PC = LABEL1+1
IORLW	Inclusive OR Literal with W
Syntax	IORLW k
Operands	k : 00h ~ FFh
Operation	$(W) \leftarrow (W) OR k$
Status Affected	Z
OP-Code	01 1010 kkkk kkkk
Description	The contents of the W register is OR'ed with the eight-bit literal 'k'. The
•	result is placed in the W register.
Cycle	1
Example	IORLW 0x35 B : W = 0x9A
·	A : W = 0xBF, Z = 0
IORWF	Inclusive OR W with f
Syntax	IORWF f [,d]
Operands	f : 00h ~ 7Fh, d : 0, 1
Operation	(destination) \leftarrow (W) OR k
Status Affected	Z
OP-Code	00 0100 dfff ffff
Description	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.
Cycle	1
Example	IORWF RESULT, 0 B : RESULT = 0x13, W = 0x91 A : RESULT = 0x13, W = 0x93, Z = 0
MOVFW	Move f to W
Syntax	MOVFW f
Operands	f : 00h ~ 7Fh
Operation	$(W) \leftarrow (f)$
Status Affected	-
OP-Code	00 1000 Offf ffff
Description	The contents of register f are moved to W register.
Cycle	1
Example	MOVF FSR, 0 B: W = ? $A: W \leftarrow f$, if $W = 0 Z = 1$

MOVLW	Move Literal to W								
Syntax Operands	MOVLW k k : 00h ~ FFh								
Operation	$(W) \leftarrow k$								
Status Affected OP-Code	-								
Description		01 1001 kkkk kkkk The eight-bit literal 'k' is loaded into W register. The don't cares will							
Description	assemble as 0's.	a into wregister. The don't cares will							
Cycle	1								
Example	MOVLW 0x5A	B:W=?							
		A : W = 0x5A							
MOVWF	Move W to f								
Syntax	MOVWF f								
Operands	f : 00h ~ 7Fh								
Operation Status Affected	(f) ← (W)								
OP-Code	- 00 0000 1fff ffff								
Description	Move data from W register to register 'f'.								
Cycle	1	·							
Example	MOVWF REG1	B: REG1 = 0xFF, W = 0x4F							
		A : REG1 = 0x4F, W = 0x4F							
NOP	No Operation								
Syntax	NOP								
Operands	-								
Operation Status Affected	No Operation Z								
OP-Code	00 0000 0000 0000								
Description	No Operation								
Cycle	1								
Example	NOP	-							
RETI	Return from Interrupt								
Syntax	RETI								
Operands									
Operation Status Affected	$PC \leftarrow TOS$, $GIE \leftarrow 1$								
OP-Code	- 00 0000 0110 0000								
Description		s POPed and Top-of-Stack (TOS) is loaded							
·		abled. This is a two-cycle instruction.							
Cycle	2								
Example	RETFIE	A : PC = TOS, GIE = 1							

RETLW	Return with Literal in W
Syntax Operands Operation Status Affected OP-Code Description Cycle	RETLW k k : 00h ~ FFh PC ← TOS, (W) ← k - 01 1000 kkkk kkkk The W register is loaded with the eightbit literal 'k'. The program counter is loaded from the top of the stack (the return address). This is a two- cycle instruction. 2
Example	CALL TABLE B : W = 0x07 : A : W = value of k8 TABLE ADDWF PCL,1 RETLW k1 RETLW k2 : RETLW kn
RET	Return from Subroutine
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	RET - PC \leftarrow TOS - 00 0000 0100 0000 Return from subroutine. The stack is POPed and the top of the stack (TOS) is loaded into the program counter. This is a two-cycle instruction. 2 RETURN A : PC = TOS
RLF	Rotate Left f through Carry
Syntax Operands Operation	RLF f [,d] f : 00h ~ 7Fh, d : 0, 1 C Register f
Status Affected OP-Code Description	C 00 1101 dfff ffff The contents of register 'f' are rotated one bit to the left through the Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is stored back in register 'f'.
Cycle Example	1 RLF REG1,0 A : REG1 = 1110 0110, C = 0 A : REG1 = 1110 0110 W = 1100 1100, C = 1

RRF	Rotate Right f through Carry							
Syntax	RRF f [,d]							
Operands	f : 00h ~ 7Fh, d : 0, 1							
Operation								
	C Register f							
Status Affected	С							
OP-Code	00 1100 dfff ffff							
Description	The contents of register 'f' are rota	ted one bit to the right through the						
		placed in the W register. If 'd' is 1, the						
	result is placed back in register 'f'.							
Cycle	1							
Example	RRF REG1,0 B	: REG1 = 1110 0110, C = 0						
Example		: REG1 = 1110 0110						
	71	$W = 0111\ 0011, C = 0$						
SLEEP	Go into standby mode, Clock os	cillation stops						
Syntax	SLEEP	· · · · · · · · · · · · · · · · · · ·						
Operands	_							
Operation	-							
Status Affected	_							
OP-Code	00 0000 1000 1010							
Description	Go into SLEEP mode with the osci	illator stopped						
Cycle								
Example	SLEEP -							
Lxample	SEE							
SUBWF	Subtract W from f							
Syntax	SUBWF f [,d]							
Operands	f : 00h ~ 7Fh, d : 0, 1							
Operation	$(W) \leftarrow (f) - (W)$							
Status Affected	C, DC, Z							
OP-Code	00 0010 dfff ffff							
Description	Subtract (2's complement method)	W register from register 'f'. If 'd' is 0,						
	the result is stored in the W registe	er. If 'd' is 1, the result is stored back in						
	register 'f'.							
Cycle								
Example	,	: REG1 = 3, W = 2, C = ?, Z = ?						
	A	: REG1 = 1, W = 2, C = 1, Z = 0						
		: REG1 = 2, W = 2, C = ?, Z = ?						
	A	: REG1 = 0, W = 2, C = 1, Z = 1						
	SUBWF REG1,1 B	: REG1 = 1, W = 2, C = ?, Z = ?						
		: REG1 = FFh, W = 2, C = 0, Z = 0						
	A	1×10^{-1}						
SWAPF	Swap Nibbles in f							
Syntax	SWAPF f [,d]							
Operands	f : 00h ~ 7Fh, d : 0, 1							
Operation	(destination, 7~4) \leftarrow (f.3~0), (destination.3~0) \leftarrow (f.7~4)							
Status Affected	-							
OP-Code	00 1110 dfff ffff							
Description		gister 'f' are exchanged. If 'd' is 0, the						
Description		is 1, the result is placed in register 'f'.						
Cycle	1	ה היה הבינים אומניכע ווי ובטופור ו						
		: REG1 = 0xA5						
Example								
	A	: REG1 = 0xA5, W = 0x5A						

TESTZ	Test if 'f' is zero								
Syntax	TESTZ f								
Operands	f : 00h ~ 7Fh								
Operation	Set Z flag if (f) is 0								
Status Affected	Z	• ()							
OP-Code	00 1000 1fff ffff								
Description	If the content of register 'f' is	0, Zero flag is set to 1.							
Cycle	1								
Example	TESTZ REG1	B : REG1 = 0, Z = ?							
-		A : REG1 = 0, Z = 1							
XORLW	Exclusive OR Literal with V	N							
Syntax	XORLW k								
Operands	k : 00h ~ FFh								
Operation	(W) ← (W) XOR k								
Status Affected	Z	Z							
OP-Code	01 1111 kkkk kkkk								
Description		er are XOR'ed with the eight-bit literal 'k'. The							
	result is placed in the W regi	ster.							
Cycle	1								
Example	XORLW 0xAF	B : W = 0xB5							
		A: W = 0x1A							
XORWF	Exclusive OR W with f								
Syntax	XORWF f [,d]								
Operands	f : 00h ~ 7Fh, d : 0, 1								
Operation	(destination) \leftarrow (W) XOR (f)							
Status Affected	Z	/							
OP-Code	∠ 00 0110 dfff ffff								
Description									
Description	Exclusive OR the contents of the W register with register 'f'. If 'd' is 0, the result is stored in the W register. If 'd' is 1, the result is stored back in register 'f'.								
Cycle	1								
Example	XORWF REG 1	B : REG = 0xAF, W = 0xB5 A : REG = 0x1A, W = 0xB5							

Chapter 2 Control Register

Description	Mnemonic	Dec	Hex	R/W
System Config Reg Low	SYSL	-	2000	-
Indirect File Reg	INDF	0	00H	-
Timer 0 Counter Reg	TOCNT	1	01H	R
Program Counter Low	PCL	2	02H	R/W
System Flags Reg	STATUS	3	03H	R/W
File Select Reg	FSR	4	04H	R/W
Port A Data Reg	PAD	5	05H	R/W
Port B Data Reg	PBD	6	06H	R/W
Port C Data Reg	PCD	7	07H	R/W
Clock control Reg	CLKCON	8	08H	R/W
WatchDog Timer Control Reg	WDTE	9	09H	-
Stop mode Control Reg	PWRDN	10	0AH	-
Interrupt Control Reg	INTCON	11	0BH	R/W
Interrupt Pending Reg	INTPND	12	0CH	R/W
External Interrupt Signal Control Reg	PINTD	13	0DH	R/W
Timer 0 Control Reg	T0CON	14	0EH	R/W
Timer 0 Data Reg	TODATA	15	0FH	R/W
PWM 0 Control Reg	PWM0CON	16	10H	R/W
PWM 0 Data Reg	PWM0DAT	17	11H	R/W
PWM 1 Control Reg	PWM1CON	18	12H	R/W
PWM 1 Data Reg	PWM1DAT	19	13H	R/W
Buzzer Control Reg	BZCON	20	14H	R/W
Port A Control Reg Low	PACONL	21	15H	R/W
Port A Control Reg High	PACONH	22	16H	R/W
Port B Control Reg	PBCON	23	17H	R/W
Port C Control Reg Low	PCCONL	24	18H	R/W
Port C Control Reg High	PCCONH	25	19H	R/W
ADC Control Reg	ADCCON	26	1AH	R/W
ADC DATA Reg Low	ADCDATL	27	1BH	R
ADC DATA Reg High	ADCDATH	28	1CH	R
Location 1DH is factory use only				
General Purpose Register 0	GPR0	30	1EH	R/W
General Purpose Register 1	GPR1	31	1FH	R/W

ADCCON — A/D Converter Control	Register
--------------------------------	----------

Address: 1AH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	

Bit	Description								
7-4	Input	Pin S	Select	ion Bi	ts				
	0	0	0	0	ADC0 (PA.0)				
	0	0	0	1	ADC1 (PA.1)				
	0	0	1	0	ADC2 (PA.2)				
	0	0	1	1	ADC3 (PA.3)				
	0	1	0	0	ADC4 (PA.4)				
	0	1	0	1	ADC5 (PA.5)				
	0	1	1	0	ADC6 (PA.6)				
	0	1	1	1	ADC7 (PA.7)				
	1	0	0	0	ADC8 (PC.6)				
	1	0	0	1	ADC9 (PC.5)				
	1	1	1	1	Connected with V_{DD} internally				
		Others Connected with GND internally							
3	End-	End-of-Conversion Status Bit							
	0	A/C	A/D conversion is in progress						
	1				complete				
2-1	Cloc	Clock Source Selection Bit ^(NOTE 1)							
	0	0	f _{OSC}	_c /16					
	0	1	f _{OSC}	c /8					
	1	0	f _{osc}	_c /4					
	1	1	f _{osc}	_c /1					
0	Conv	Conversion Start Bit							
	0	No meaning							
	1 A/D conversion start								
NOTE :									
1. Maximum	ADC In	put C	lock is	4MHz	Ζ.				

ADCDATL — ADC Data Register Low Byte

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	_	-	-	-	-	
R/W	-	-	-	-	-	-	R	R	

Bit		Description					
1-0	ADC Data	ADC Data Low Byte					
	XX	ADC Data Value Lower 2Bit					

ADCDATH — ADC Data Register High Byte

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	_	-	-	-	-	
R/W	R	R	R	R	R	R	R	R	

Bit		Description
7-0	ADC Data High I	Byte
	XXXXXXXX	ADC Data Value Higher 8Bit

BZCON — Buzzer Out Control Register

Bit 7 6 5 4 2 1 0 **Related Register** 3 1 1 **Reset Value** 1 1 1 1 1 1 R/W R/W R/W R/W R/W R/W R/W R/W

Bit		Description								
7-6	Input	Cloc	k Selection							
	0	0	f _{OSC} / 8							
	0	1	f _{OSC} / 16							
	1	0	f _{OSC} / 32							
	1	1	f _{OSC} / 64							
5-0	Buzz	er Per	iod Data							
	XXX	XXX	Period Data							

22

Address: 14H

Address: 1CH

CLKCON — Clock Control Register

Address: 08H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	-	_	-	-	_	0	0	
R/W	R/W	_	-	-	-	-	R/W	R/W	

Bit		Description									
7	Syste	System Divider Clear bit									
	0	No	No effect								
	1	Cle	Clear Divider (Auto Clear)								
6-2	Not U	Not Used									
1-0	Divid	Divided by Selection Bits for CPU Clock frequency									
	0	0 Divide by f _{OSC} /16									
	0	1	Divide by f _{OSC} /8								
	1	0	Divide by f _{OSC} /4								
	1	1	Divide by f _{OSC} /2								

FSR — File Select Register

Address: 04H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	-	-	-	-	-	-	
R/W	_	R/W							

Bit		Description								
7	Not Used	Not Used								
6-0	File Select Regis	File Select Register								
	000 0000	Not Used.								
	1 ~ 7Fh	Indirect Addressing Location								

GPR0/1 — General Purpose Register

Address: 1EH/1FH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	General Purpose Register
	GPR0, GPR1 are mirrored all bank. It is useful to pass arguments to SUB routine or backup Working register (W) and STATUS register in ISR or SUB routine.

INTCON — Interrupt Control Register

Address: 0BH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	0	0	0	0	0	
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W	

Bit		Description									
7-5	Not U	Not Used									
4	PWM	1 Overflow Interrupt Enable Bit									
	0	PWM 1 Interrupt Disable									
	1	PWM 1 Interrupt Enable									
3	PWM	0 Overflow Interrupt Enable Bit									
	0	PWM 0 Interrupt Disable									
	1	PWM 0 Interrupt Enable									
2	Time	r 0 Interrupt Enable Bit									
	0	Timer 0 Interrupt Disable									
	1	Timer 0 Interrupt Enable									
1	Port /	A.1 EXTINT1 Interrupt Enable Bit									
	0	EXTINT1 Interrupt Disable									
	1	EXTINT1 Interrupt Enable									
0	Port /	A.0 EXTINT0 Interrupt Enable Bit									
	0	EXTINT0 Interrupt Disable									
	1	EXTINT0 Interrupt Enable									

INTPND — Interrupt Pending Register

Address: 0CH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	0	0	0	0	0	
R/W	-	-	-	R/W	R/W	R/W	R/W	R/W	

Bit		Description									
7-5	Not U	Not Used									
4	PWM	1 Overflow Interrupt Pending Bit									
	0	No interrupt pending (read) / Pending bit clear (write)									
	1	Interrupt is pending (read) / No effect (write)									
3	PWM	0 Overflow Interrupt Pending Bit									
	0	No interrupt pending (read) / Pending bit clear (write)									
	1	Interrupt is pending (read) / No effect (write)									
2	Timer	0 Interrupt Pending Bit									
	0	No interrupt pending (read) / Pending bit clear (write)									
	1	Interrupt is pending (read) / No effect (write)									
1	Port A	A.1 EXTINT1 Interrupt Pending Bit									
	0	No interrupt pending (read) / Pending bit clear (write)									
	1	Interrupt is pending (read) / No effect (write)									
0	Port A	A.0 EXTINT0 Interrupt Pending Bit									
	0	No interrupt pending (read) / Pending bit clear (write)									
	1	Interrupt is pending (read) / No effect (write)									

Address: 15H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit			Description
7-6	Port	A.3 Co	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC3 Input (Schmitt trigger input off)
5-4	Port	A.2 Co	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC2 Input (Schmitt trigger input off)
3-2	Port	A.1 Co	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable) / External Interrupt 1 Input
	0	1	Schmitt trigger input / External Interrupt 1 Input
	1	0	Push-pull output
	1	1	ADC1 Input (Schmitt trigger input off)
1-0	Port	A.0 Co	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable) / External Interrupt 0 Input
	0	1	Schmitt trigger input / External Interrupt 0 Input
	1	0	Push-pull output
	1	1	ADC0 Input (Schmitt trigger input off)

PACONH — Port A Control Register (High Byte)

Address: 16H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit			Description
7-6	Port	A.7 C	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable)
	0	1	PWM 1 output
	1	0	Push-pull output
	1	1	ADC7 Input (Schmitt trigger input off)
5-4	Port	A.6 C	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable)
	0	1	PWM 0 output
	1	0	Push-pull output
	1	1	ADC6 Input (Schmitt trigger input off)
3-2	Port	A.5 C	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC5 Input (Schmitt trigger input off)
1-0	Port	A.4 C	onfiguration Bits
	0	0	Schmitt trigger input (pull-up enable)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	ADC4 Input (Schmitt trigger input off)

PBCON — Port B Control Register

Address: 17H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	-	0	0	1	0	0	1	
R/W	-	-	-	_	-	-	-	_	

Bit				Description							
7-6	Not U	Not Used									
5-3	Port	B.1 Co	onfigu	iration Bits							
	0	0	0	Schmitt trigger input (pull-up enable)							
	0	0	1	Schmitt trigger input							
	0	1	0	Push-pull output							
	0	1	1	Schmitt trigger input (pull-down)							
	1	0	0	Open-drain Output							
	Oth	ner Va	lue	Not Used							
2-0	Port	B.0 Co	onfigu	iration Bits							
	0	0	0	Schmitt trigger input (pull-up enable)							
	0	0	1	Schmitt trigger input							
	0	1	0	Push-pull output							
	0	1	1	Schmitt trigger input (pull-down)							
	1	0	0	Open-drain Output							
	Oth	ner Va	lue	Not Used							

PCCONL — Port C Control	Register (Low Byte)
-------------------------	---------------------

Address: 18H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit			Description
7-6	Port	C.3 Co	onfiguration Bits
	0	0	Schmitt trigger input (pull-up)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	Open-drain output
5-4	Port	C.2 C	onfiguration Bits
	0	0	Schmitt trigger input (pull-up)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	Open-drain output
3-2	Port	C.1 Co	onfiguration Bits
	0	0	Schmitt trigger input (pull-up)
	0	1	Buzzer Out
	1	0	Push-pull output
	1	1	Open-drain output
1-0	Port	C.0 Co	onfiguration Bits
	0	0	Schmitt trigger input(pull-up)
	0	1	Schmitt trigger input
	1	0	Push-pull output
	1	1	T0 match output

Address: 19H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit				Description
7-5	Port	C.6 C	onfigu	iration Bits
	0	0	0	Schmitt trigger input (pull-up)
	0	0	1	Schmitt trigger input
	0	1	Х	ADC8 Input
	1	0	0	Push-pull output
	1	0	1	Open-drain output (pull-up)
	1	1	0	Open-drain output
	1	1	1	Clock Output
4-2	Port	C.5 C	onfigu	iration Bits
	0	0	0	Schmitt trigger input (pull-up)
	0	0	1	Schmitt trigger input
	0	1	Х	ADC9 Input
	1	0	0	Push-pull output
	1	0	1	Open-drain output (pull-up)
	1	1	0	Open-drain output
	1	1	1	Not Used
1-0	Port	C.4 C	onfigu	iration Bits
	0	0	Sch	nmitt trigger input (pull-up)
	0	1	Sch	nmitt trigger input
	1	0	Pus	sh-pull output
	1	1	Ope	en-drain output

PAD — Port A Data Register

Address: 05H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	Port A.7-0 Data Bits

PBD — Port B Data Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	_	_	_	_	0	0	0	
R/W	-	-	-	_	-	-	-	_	

Bit	Description
7-3	Not Used
2-0	Port B.2-0 Data Bits

PCD — Port C Data Register

Address: 07H

Address: 06H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	0	0	0	0	0	0	0	
R/W	_	R/W							

Bit	Description
7	Not Used
6-0	Port C.6-0 Data Bits

PCL — Program Counter Low Byte

Address: 02H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	Program Counter Low Byte
	This register represents Lower 8-Bit of PC+1. The PC can be changed writing any value (00h~FFh) into this register. It is similar to GOTO instruction. But the branch instruction by PCL can access only higher address than PC.

PINTD — External Interrupt Signal Control Register

Address: 0DH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	_	_	0	0	0	0	
R/W	_	_	_	_	R/W	R/W	R/W	R/W	

Bit		Description										
7-4	Not U	Not Used										
3-2	Exter	External Interrupt 1 Input Signal Selection Bits										
	0	0	Falling Edge									
	0	1	Rising Edge									
	1	Х	Both Edge									
1-0	Exter	nal In	terrupt 0 Input Signal Selection Bits									
	0	0	Falling Edge									
	0	1	Rising Edge									
	1	Х	Both Edge									

PWM0CON — PWM0 Control Register

Address: 10H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	-	0	0	1	0	0	0	
R/W	_	_	R/W	R/W	-	R/W	R/W	R/W	

Bit			Description								
7-6	Not U	Not Used									
5-4	PWM	PWM0 Input Clock Selection Bit									
	0	0 0 f _{OSC} / 64									
	0	1	f _{osc} / 8								
	1	0	f _{osc} / 2								
	1	1	f _{osc} / 1								
3	Not U	Not Used									
2	PWM	0 DAT	A Reload Interval Selection Bit								
	0	Rel	oad from 8-bit up counter overflow								
	1	Rel	oad from 6-bit up counter overflow								
1	PWM	0 Cou	nter Clear Bit (Auto Cleared)								
	0	No	effect								
	1	Cle	ar the PWM counter (when write)								
0	PWM	0 Ena	ble Bit								
	0	Sto	p counter								
	1	Sta	rt (Resume countering)								

PWM0DAT — PWM0 Data Register

Address: 11H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit		Description									
7-2	PWM	PWM Period Data									
	XXX	XXX	Period Data								
1-0	Exter	Extension Cycle Selection Bit									
	0	0	-								
	0	1	2								
	1	0	1, 3								
	1	1	1, 2, 3								

PWM1CON — PWM1 Control Register

Address: 12H

Bit	7	6	5	4	3	2	1	0	Related Register	
Reset Value	0	0	0	0	-	0	0	0		
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W		

Bit			Description					
7-6	PWM	1 Exte	ension Cycle Selection Bit					
	0	0	-					
	0	1	2					
	1	0	1, 3					
	1	1	1, 2, 3					
5-4	PWM	PWM1 Input Clock Selection						
	0	0	f _{OSC} / 64					
	0	1	f _{OSC} / 8					
	1	0	f _{OSC} / 2					
	1	1	f _{osc} / 1					
3	Not U	sed						
2	PWM	1 DA1	A Reload Interval Selection Bit					
	0	Rel	oad from 10-bit up counter overflow					
	1	Rel	oad from 8-bit up counter overflow					
1	PWM	1 Cοι	Inter Clear Bit (Auto Cleared)					
	0	No	effect					
	1 Clear the PWM counter (when write)							
0	PWM	1 Ena	ble Bit					
	0	Sto	p counter					
	1	Sta	rt (Resume counting)					

PWM1DAT — PWM1 Data Register

Bit **Related Register** Reset Value R/W R/W R/W R/W R/W R/W R/W R/W

Bit		Description
7-0	PWM1 Period Da	ata Low Byte
	XXXXXXXX	Period Data

PWRDN — Power Down Control Register

Address: 0AH

Address: 13H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	I	-	-	-	-	-	-	-	
R/W	I	-	-	-	-	-	-	-	

Bit	Description							
7-0 Power Down Control Register								
	This register is not physical register. The device can enter STOP mode by writing any value into this register. The SLEEP instruction is equivalent to "MOVWF PWRDN".							

STATUS — System Flags Register

Address: 03H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	_	0	_	0	0	0	
R/W	-	_	_	R/W	_	R/W	R/W	R/W	

Bit		Desc	cription								
7-5	Not U	sed (Must be set to 0)									
4	SRAM	SRAM Bank Selection Bit									
	0 Page 0										
	1	1 Page 1									
3	Not U	Not Used (Must be set to 0)									
2	Zero Flag(Z)										
	0	The result of a logic operation	is not zero								
	1 The result of a logic operation is zero										
	Decir	Decimal Carry Flag or Decimal/Borrow Flag (DC)									
		ADD instruction	SUB instruction								
1	1: a	a carry from the low nibble bits	1: no borrow								
	C	of the result occurred	0: a borrow from the low nibble bits of								
	0: r	io carry	the result occurred								
	Carry	Flag(C) or Borrow Flag									
0		ADD instruction	SUB instruction								
, v	-	carry occurred from the MSB	1: no borrow								
	0: r	io carry	0: a borrow occurred from the MSB								

SYSL — System Config Register

Address: 2000H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W	-	-	-	-	-	-	-	-	

Bit			Description							
13	Cod	e prote	ction selection bit							
	1	No pi	rotect							
	0	Code	protection							
7	Not	Not Used (Must Set be '1')								
6-5	Clock Source Selection Bit									
	CSS1	CSS0	CSS1 ~ 0 Clock Source Selection Bit							
	0	0	External crystal / ceramic oscillator							
	0	1	External RC							
	1	0	Internal RC (0.48 MHz in V_{DD} = 5 V)							
	1	1	Internal RC (2.9 MHz in V_{DD} = 5 V)							
4-0	LVS	: LVR L	evel Selection Bit							
	11	001	2.0V							
	11	010	2.3V							
	10	001	3.0V							
	01	111	3.9V							

TOCON — TIMER 0 Control Register

Address: 0EH

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	_	0	0	I	-	-	0	
R/W	_	_	R/W	R/W	-	-	_	R/W	

Bit	Description			
7-6	Not Used			
5-4	Time	Timer 0 Input Clock Selection Bits		
	0	0	f _{OSC} /4096	
	0	1	f _{OSC} /256	
	1	0	f _{OSC} /8	
	1	1	f _{OSC} /1	
3-1	Not Used			
0	Timer 0 Counter Clear Bit			
	0 No effect			
	1	1 Clear the timer 0 counter (when write)		

TOCNT — TIMER 0 Counter Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	

Bit	Description
7-0	Timer 0 Counter Value

TODATA — TIMER 0 Data Register

Address: 0FH

Address: 01H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	Period Data

WDTE — WatchDog Timer Control Register

Address: 09H

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	-	-	-	-	-	-	-	-	

Bit	Description
7-0	WatchDog Timer Control Register
	This register is not physical register. The WatchDog timer can be enabled and refreshed by CLRWDT or writing any value into this register. The CLRWDT instruction is equivalent to "MOVWF WDTE".

3. 8-bit Timer

TIMER0 has the following functional components:

- Clock frequency selector
- 8-bit counter (TOCNT), 8-bit comparator, 8-bit data register (TODATA), and TODATA buffer.
- TIMER0 control register (T0CON)

< Figure 3-1 Block Diagram >

TOCON is used to select input clock frequency, to clear the timer 0 counter. Interrupt enable and pending bit for Timer0 interrupt is controlled by INTCON and INTPND. In interval timer mode, a match signal is generated when the counter value is identical to the value TODATA. The match signal generates a TIMER0 match interrupt, clears the counter and counting resumes. If the TIMER0 interrupt is disabled (INTCON.2 = 0), the match signal do not generates match interrupt request. The clock divider is not the constituent of Timer 0, then the divided clock is asynchronous with Timer interrupt enable signal. Therefore, there is discrepancy in first match interval. To minimize this discrepancy, divider reset can be used (CLKCON).

TM59PA40

< Figure 3-2 Timimg diagram >

01h org int_vector: BTFSS INTCON, 2 ; Timer 0 Interrupt Check GOTO NEXT_INT ; Jump to Other Interrupt Rotine ; Timer 0 Interrupt Rotine • NEXT_INT: • RETI ; Set TODATA 1FH MOVLW 1Fh MOVWF TODATA 0001000b MOVLW ; fosc/256 MOVWF TOCON ; Set TOCON Control Register BSF TOCON, 0 ; TimerO Counter Clear BSF PCCONL, 0 ; Select PX.0 match output. PCCONL, 1 ; PCCONL Bit [1-0]:[11] is match output BSF BSF INTCON, 2 ; Timer0 Interrupt Enable • .

Example 3-1> Timer 0 Sample Code (f_{OSC} = 8.192 MHz, Interval = 1ms, T0OUT = 500 Hz)

4. 8-Bit PWM

PWM0 has the following functional components:

- Clock frequency selector
 8-bit up-counter, 6-bit comparator, 6-bit data register and 6-bit data buffer.
- 2-bit extension control logic, 2-bit extension register and extension data buffer.
- Control register (PWM0CON)

To determine the PWM0 operating frequency, the upper 6-bits of counter is compared to the PWM0 data register (PWM0DAT.7-.2). In order to achieve higher resolutions, the lower 2-bits of the counter can be used to modulate the "extended" cycle.

< Figure 4-1 Block Diagram >

The PWM output signal toggles to Low level whenever the lower 6-bit of counter matches the reference data register (PWM0DAT.7-.2). If the value in the PWM0DAT.7-.2 register is not zero, an overflow of the lower 6bits of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference data register determines the module's base duty cycle.

The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register (PWM0DAT.1-.0). This lower 2-bits of counter value is used to "extend" the duty cycle of the PWM output. The "extension" value is one extra clock period at specific cycles (see Table 4-1).

PWM0DAT.1-0	Extended Cycle				
00	None				
01	2				
10	1, 3				
11	1, 2, 3				
< Table 4-1 PWM output extended cycle >					

For example, if the value in the extension data register is '01B', the 2nd cycle will be one pulse longer than the other 3 cycles. (see Figure 4-2).

Example 4-1> PWM0 Sample Code (f_{OSC} = 8 MHz, 1 Cycle = 500 μ s, Extend 2nd Cycle)

MOVLW 05h ; Set PWM0 Data Register MOVWF PWM0DAT ; Data = 1, Extension = 1 CLRF PACONH BSF PACONH, 4 ; Select PACONH.54 '01' PWM0 Out. CLRF PWM0CON ; $f_{\text{OSC}}/64$, 8-bit Overflow Reload, PWM Stop ; PWM0 Counter Clear BSF PWM0CON, 1 BSF PWM0CON, 0 ; PWM0 Start BCF PWM0CON, 0 ; PWM0 Stop

5. 10-Bit PWM

PWM1 has the following functional components:

- Clock frequency selector
 10 bit up of the selector
- 10-bit up-counter, 8-bit comparator, 8-bit data register and 8-bit data buffer.
- 2-bit extension control logic, 2-bit extension register and extension data buffer.
- Control register (PWM1CON)

To determine the PWM1 operating frequency, the upper 8-bit counter is compared to the PWM1 data register (PWM1DAT). In order to achieve higher resolutions, the 2-bits of the counter can be used to modulate the "extended" cycle.

< Figure 5-1 Block Diagram >

The PWM output signal toggles to Low level whenever the lower 8-bit of counter matches the reference data register (PWM1DAT). If the value in the PWM1DAT register is not zero, an overflow of the lower 8-bits of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference data register determines the module's base duty cycle.

The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register (PWM1CON.7-6). This lower 2-bits is used to "extend" the duty cycle of the PWM output. The "extension" value is one extra clock period at specific cycles (see Table 5-1).

PWM1CON.7-6	Extended Cycle
00	None
01	2
10	1, 3
11	1, 2, 3

< Table 5-1 PWM output extended cycle >

For example, if the value in the extension data register is '01B', the 2nd cycle will be one pulse longer than the other 3 cycles. (see Figure 5-2).

< Figure 5-2 Extended Output >

6. Analog to Digital Converter

The 10-bit CMOS ADC (Analog to Digital Converter) consists of a 10-channel analog input multiplexer, control register, clock generator, 10 bit successive approximation register, and output register.

A/D CONVERSION PROCEDURE

- 1. Configure the analog input pins to ADC input mode by making the appropriate settings in the I/O port control registers.
- 2. Select ADC input channel.
- 3. Start conversion by set the ADCCON.0 to '1'.
- 4. When conversion has been completed, the EOC flag is set to '1'.
- 5. The converted digital value is loaded to the ADCDATL, ADCDATH register, and then the ADC module enters an idle state.
- 6. The digital conversion result can now be read from the ADDATAH, ADDATAL register.

If the chip enters to STOP mode in conversion process, there will be a leakage current path in A/D block. The ADC operation must be finished before the chip enters STOP mode.

There is not sampling/hold circuit in ADC. Therefore, it is important that any fluctuations in the analog level at the ADC0–ADC9 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

MOVLW MOVWF	00000100b ADCCON	; f _{osc} /4, ADC0 ; Configure ADCCON
CLRF BSF	PACONL PACONL, 0	
BSF	PACONL, 0 PACONL, 1	; Configure PA.0 ADC Input 0
BSF ADC LOOP:	ADCCON, 0	; Start Conversion
BTFSS	ADCCON, 3	
GOTO	ADC_LOOP	; Wait until EOC bit is set
		; Converted value can be read from ADDATL and ; ADDATH.

< Figure 6-1 Analog to Digital Converter Block Diagram >

7. I/O Ports

The TM59PA40 has three I/O port, PORTA, PORTB and PORTC (MAX 18 Pin). These ports can be accessed directly by writing or reading port data register.

PORT	Bit	Pin No	Pin Description	Input/ Output	PIN Type
	0	19	Schmitt trigger input, Push-pull output, ADC0, External Interrupt 0	I/O	
	1	18	Schmitt trigger input, Push-pull output, ADC1, External Interrupt 1	I/O	
	2	17	Schmitt trigger input, Push-pull output, ADC2	I/O	
PORT A	3	16	Schmitt trigger input, Push-pull output, ADC3	I/O	С
	4	15	Schmitt trigger input, Push-pull output, ADC4	I/O	
	5	14	Schmitt trigger input, Push-pull output, ADC5	I/O	
	6 13		Schmitt trigger input, Push-pull output, ADC6, PWM0	I/O	
	7	12	Schmitt trigger input, Push-pull output, ADC7, PWM1	I/O	
	0	2	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	5
PORT B	1	3	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	D
	2	4	Schmitt-trigger input	I	А
	0	5	Schmitt-trigger input, Push-pull output, Open-drain Output, Timer0 match Output	I/O	С
	1	6	Schmitt-trigger input, Push-pull output, Open-drain Output, Buzzer Out	I/O	
	2	7	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	5
PORT C	3	8	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	В
	4	9	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	
	5	10	Schmitt-trigger input, Push-pull output, Open-drain Output, ADC9	I/O	0
	6	11	Schmitt-trigger input, Push-pull output, Open-drain Output, ADC8, Clock Out	I/O	С

< Table 7-1 Port Configuration Overview >

Pin Circuit

< Figure 7-1 Pin Circuit Type A >

< Figure 7-2 Pin Circuit Type B >

< Figure 7-3 Pin Circuit Type C >

PORTA

Port A has 8-bit I/O Pins. It can be used for normal I/O (Schmitt trigger input, push-pull output, open-drain output) or some alternative function (ADC, External interrupt 0, 1, PWM output).

PORTB

Port B has 3-bit I/O Pins. PortB.1-0 can be used clock input or normal I/O. If the PortB.1-0 pins are used as external clock Input, the control register (PBCON) must be set to output port to prevent current consumption. PortB.2 can be used for input only pin.

PORTC

Port C has 7-bit I/O Pins. It can be used for normal I/O (Schmitt trigger input, push-pull output, open-drain output) or some alternative function (ADC, Clock output, T0 clock output, Buzzer out).

8. Buzzer Out

The TM59PA40 has Buzzer driver that consist of 6-bit counter, clock divider, control register. It generates 50% duty square-wave and the frequency cover a wide range.

< Figure 8-1 Block Diagram >

It can be enabled by setting the bit PC.1 as Buzzer out function. When the Buzzer Out is enabled, the 6-bit counter is cleared and PC.1 output status is '0' and start counting up. If the counter value is match up to period data (BZCON.5-0), then PC.1 output status is toggle and the counter is cleared. Also, the counter is cleared by 6-bit counter overflow. BZCON.5-0 determines output frequency. Frequency calculation is as follows.

 $F_{BZ} = f_{OSC}/2/Prescaler Ratio/(Period Data + 1)$

 $\begin{array}{l} \mbox{Example 8-1> Output frequency calculation} \\ \mbox{CPU Clock } (f_{OSC}): 8.192 \mbox{MHz} \\ \mbox{Prescaler Ratio } (BZCON.7-6): 11 \ (f_{OSC} \ /64), \\ \mbox{Period Data } (BZCON.5-0): 9 \end{array}$

 $F_{BZ} 8.192M / 2 / 64 / (9+1) = 6400 (Hz)$

Example 8-2> Sample Code

CLRF MOVLW MOVWF BSF	PCCONL 11001001b BZCON PCCONL, 2	; Clear PCCONL ; fosc/64, Period Data 9 (6.4 KHz Output) ; Set Buzzer 6.4KHz Output ; Set PORTC.1 Buzzer Out. Buzzer Enable
BCF	PCCONL, 2	; Set PORTC.1 Input mode. Buzzer Disable

< Figure 8-2 Timing Diagram >

9. Electrical Characteristics

9.1 Absolute Maximum Ratings $(T_A = 25 \degree C)$

Parameter	Rating	Unit
Supply voltage	– 0.3 to + 5.5	
Input voltage	-0.3 to V _{DD} + 0.3	V
Output voltage	-0.3 to V _{DD} + 0.3	
Output current high per 1 PIN	- 25	
Output current high per all PIN	- 80	m۸
Output current low per 1 PIN	+ 30	mA
Output current low per all PIN	+ 150	
Maximum Operating Voltage	5.5	V
Operating temperature	– 45 to + 85	°C
Storage temperature	– 65 to + 150	

9.2 DC Characteristics (T_A = -45 °C to +85 °C, V_{DD} = 2.0 V to 5.5 V)

Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
Input High Voltage	V _{IH1} V _{IH2}	Except X _{IN} , X _{OUT} X _{IN} , X _{OUT}	V_{DD} = 2.0 to 5.5 V	0.8 V _{DD} V _{DD} - 0.1	_	V_{DD}	V
Input Low Voltage	V _{IL1} V _{IL2}	Except X_{IN} , X_{OUT} X_{IN} and X_{OUT}	V_{DD} = 2.0 to 5.5 V	_	-	0.2 V _{DD} 0.1	V
Output High Voltage ^(NOTE 1)	V _{OH}	PORT A,B,C	V _{DD} = 4.5 to 5.5 V	V _{DD} -1.5	V _{DD} - 0.4	-	V
Output Low Voltage ^(NOTE 2)	V _{OL}	PORT A,B,C	V _{DD} = 4.5 to 5.5 V	_	0.4	2.0	V
Input Leakage Current(pin high)	I _{ILH}	Except X_{IN} , X_{OUT} X_{IN} and X_{OUT}	$V_{IN} = V_{DD}$ $V_{IN} = V_{DD}$	-	-	1 20	uA
Input Leakage Current(pin low)	I _{ILL}	Except X_{IN} , X_{OUT} X_{IN} and X_{OUT}	V _{IN} = 0 V V _{IN} = 0 V	_	-	-1 -20	uA
Output Leakage Current(pin high)	I _{OLH}	All output pins	V _{OUT} = V _{DD}	_	-	2	uA
Output Leakage Current(pin low)	I _{OLL}	All output pins	V _{OUT} = 0 V	-	-	-2	uA
Power Supply Current	I _{DD}	Run 10 MHz Run 3 MHz	V _{DD} = 4.5 to 5.5 V V _{DD} = 2.0 V	_	7	12 4	mA
		Stop mode	V _{DD} = 4.5 to 5.5 V	_	100	200	– uA
			V _{DD} = 2.6 V		30 60	60	
Pull-Up Resistor	R _P	V _{IN} = 0 V Ports A, B, C	V_{DD} = 5 V	25	50	100	kΩ
Pull-Down Resistor	R _₽	V _{IN} = 0 V Ports B	V_{DD} = 5 V	25	50	100	112 2

NOTE:

- 1. Output current high = -10 mA
- 2. Output current Low = 25 mA

9.3 Clock Timing Constants $(T_A = -45^{\circ}C \text{ to } + 85^{\circ}C)$

Oscillator Condition		Min	Тур	Max	Unit
External Clock	V_{DD} = 2.5 to 5.5 V	1	-	12	
External Clock	V_{DD} = 2.0 to 5.5 V	1	_	4	
External RC ^(NOTE 1)	V_{DD} = 4.75 to 5.25 V		4		MHz
Internal RC ^(NOTE 2)	1/-4.75 to 5.25	_	2.9	- 1	
	$V_{DD} = 4.75$ to 5.25 V		0.48		

NOTE:

- **1.** Tolerance : ± 10 % at T_A =25°C **2.** Tolerance : ± 20 % at T_A =25°C

External Oscillator Circuit (Crystal or Ceramic)

External R-C Oscillator

9.4 External Interrupt Characteristics (T_A = -45 °C to +85 °C, V_{DD} = 2.0 V to 5.5 V)

Parameter	Conditions	Min	Тур	Max	Unit
Input High Voltage	-	0.8 V _{DD}	_	V _{DD}	V
Input Low Voltage	-	-	_	$0.2 V_{DD}$	V
External Interrupt Input Width(t _{INT})	V_{DD} = 5 V \pm 10 %	-	200	-	ns

Parameter	Conditions	Min	Тур	Max	Unit s
Total Accuracy		-	-	± 3	
Integral Non-Linearity		_	_	± 2	
Differential Non-Linearity	$V_{DD} = 5.12 \text{ V}, \text{ V}_{SS} = 0 \text{ V}$ CPU clock = 10 MHz	_	_	± 1	LSB
Offset Error of Top		_	± 1	± 3	
Offset Error of Bottom		_	± 1	± 2	1
Max Input Clock (f _{ADC})	-	-	_	4	MHz
Conversion Time (NOTE 1)	$f_{ADC} = 4 \text{ MHz}$	-	20	-	μS
Analog Input Voltage	-	V_{SS}	-	V_{DD}	V
Analog Input Impedance	-	2	-	_	MΩ
Analog Input Current	$V_{DD} = 5 V$	-	_	10	μA
	$V_{DD} = 5 V$	_	1	3	mA
Analog Block Current ^(NOTE 2)	$V_{DD} = 3 V$	—	0.5	1.5	mA
Current	V_{DD} = 5 V stop mode	-	100	500	nA

9.5 A/D Converter Electrical Characteristics ($T_A = -45$ °C to +85 °C, $V_{DD} = 2.0$ V to 5.5 V, $V_{SS} = 0$ V)

NOTE:

1. "Conversion time" is the time required from the moment a conversion operation starts until it ends.

2. I_{ADC} is operating current during A/D conversion.

9.6 LVR Circuit Characteristics (T_A = -45 °C to +85 °C, V_{DD} = 2.0 V to 5.5 V)

Parameter	Symbol	Min	Тур	Max	Unit
LVR reference Voltage	V _{LVR}	_	2.0 2.3 3.0 3.9	_	V
LVR Hysteresis Voltage	V _{HYST}	-	±0.3	-	V
Low Voltage Detection time	t _{LVR}	1	-	-	μS

10. Packaging Information

10.1 20-DIP Package Dimension 20 lead, Dual In-line Package Dimension in Millimeters

10.2 20-SOP Package Dimension 20 lead, Small Outline Package Dimension in Millimeters

10.3 20-SSOP Package Dimension 20 lead, Shrink Small Outline Package Dimension in Millimeters

10.4 16-DIP Package Dimension 16 lead, Dual In-line Package Dimension in Millimeters

10.5 16-SOP Package Dimension 16 lead, Small Outline Package Dimension in Millimeters

10.6 16-SSOP Package Dimension 16 lead, Shrink Small Outline Package Dimension in Millimeters

