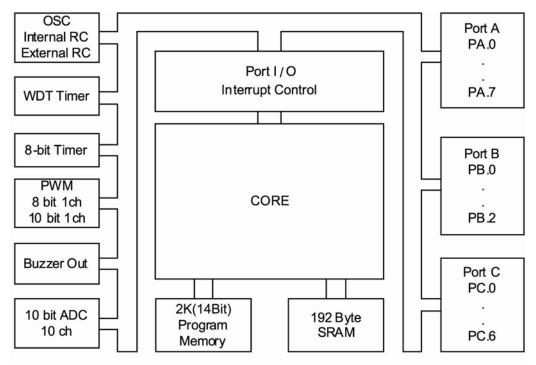
TM59PA20

User's Manual

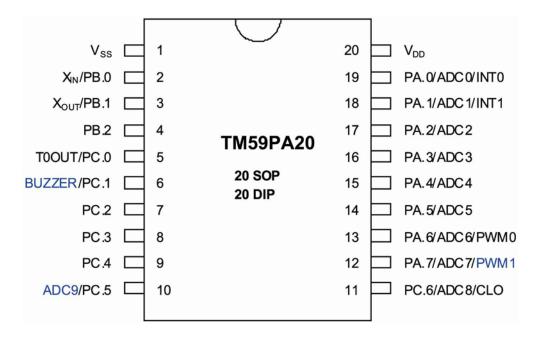
Tenx reserves the right to change or discontinue this product without notice.

tenx technology, inc.

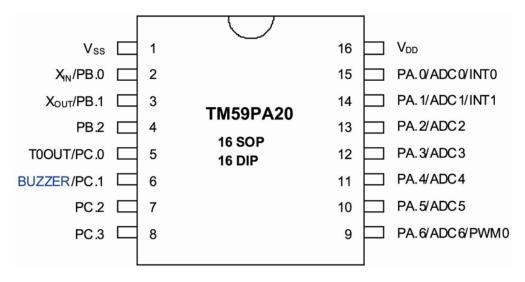
Contents


1.	Overview	2
	1.1. FEATURE 1.2. Clock Scheme and Instruction Cycle 1.3. Addressing Mode 1.4. ALU and Working (W) Register 1.5. STATUS Register 1.6. Interrupt 1.7. Reset 1.8. Power-Down Mode 1.9. System Config Register 1.10. Instruction Set	5 6 6 7 7
2.	Control Register	. 21
3.	8-Bit Timer	. 38
4.	8-Bit PWM	. 41
5.	10-Bit PWM	. 43
6.	Analog to Digital Converter	. 45
7.	I/O Ports	. 47
8.	Buzzer Out	. 51
9.	Electrical Characteristics	. 53
10.	Packaging Information	. 58

1

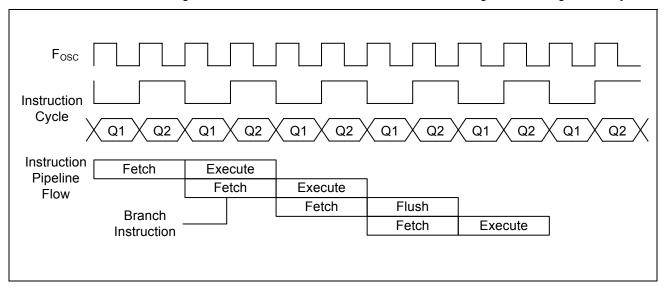

1. Overview

1.1 FEATURE


- 1. ROM: 2K x 14 bits
- 2. RAM: 192 x 8 bits
- 3. STACK: 6 Levels
- 4. I/O ports: Three I/O ports (Max 18 pins) and Bit programmable ports
- **5.** Timer/Counter: One 8-bit timer/counter with time interval modes
- 6. Watchdog Timer: On chip WDT based on system oscillator
- 7. Power-On Reset & Watchdog timer overflow Reset & Low Voltage reset
- **8.** Oscillation Frequency:
 - 1 MHz to 12 MHz external crystal oscillator
 - Internal RC: 2.8 MHz (typ.), 470KHz (typ.) in VDD = 5 V
 - External RC
- **9.** High-speed PWM:
 - 8-bit PWM 1-ch, 6-bit base + 2-bit extension (Max: 187 kHz)
 - 10-bit PWM 1-ch, 8-bit base + 2-bit extension (Max: 47 kHz)
- **10.** Operation Voltage: LVR to 5.5V
- 11. Instruction set: 35 Instructions
- **12.** Execution Time: 167 ns at 12 MHz f_{OSC}
- **13.** A/D Converter: 10-bit conversion resolution with 10-ch analog input pins (MAX)
- **14.** Interrupts: 5 interrupt sources with one vector with one interrupt level
- **15.** Buzzer Out: Frequency Selectable Buzzer Output
- **16.** System Config Option: LVR Level Selection and Clock Source Selection
- 17. Reset vector: 000H
- 18. Interrupt vector: 001H
- 19. Power Down mode
- 20. Package Types:
 - 20-SOP, DIP
 - 16-SOP, DIP

<Figure 1-1. System Block Diagram>

<Figure 1-2. Pin Assignment Diagram _ Package Types: 20-Pin SOP/DIP>


<Figure 1-3. Pin Assignment Diagram _ Package Types: 16-Pin SOP/DIP>

Name	In/Out	Pin Description	Shared Function
PA.0-PA.7	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull output. Pull-up resistors are assignable by software. PortA pins can also be used as A/D converter input, PWM output or external interrupt input.	ADC0-ADC7 INT0/INT1 PWM0/PWM1
PB.0–PB.1	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull, open-drain output. Pull-up resistors or pull-down resistors are assignable by software.	$X_{IN_{j}}X_{OUT}$
PB.2	I	Schmitt trigger input port	_
PC.0–PC.6	I/O	Bit-programmable I/O port for Schmitt-trigger input or push-pull, open-drain output. Pull-up resistors are assignable by software.	ADC8-9/CLO T0OUT/BUZZER
X_{IN} , X_{OUT}	_	Crystal/Ceramic, or RC oscillator signal for system clock.	PB.0-PB.1
$V_{DD, V_{SS}}$	Р	Voltage input pin and ground	_
CLO	0	System clock output port	PC.6
INT0-INT1	I	External interrupt input port	PA.0, PA.1
PWM0	0	8-Bit high speed PWM output	PA.6
PWM1	0	10-Bit high speed PWM output	PA.7
T0OUT	0	Timer0 match output	PC.0
ADC0-ADC9	I	A/D converter input	PA.0-PA.7 PC.5-PC.6

<Table 1-1. PIN Description> < I: Input; O: Output; I/O: Bi-direction; P: Power >

1.2 Clock Scheme and Instruction Cycle

The clock input (X_{IN}) is internally divided by two to generate Q1 state and Q2 state for each instruction cycle. The Programming Counter (PC) is updated at Q1 and the instruction is fetched from program ROM and latched into the instruction register in Q2. It is then decoded and executed during the following Q1-Q2 cycle.

< Figure 1-4. Clock/Instruction cycle and pipeline >

Branch instructions take two cycle since the fetch instruction is 'flushed' from the pipeline, while the new instruction is being feched and then executed.

1.3 Addressing Mode

The Programming Counter is 11-bit wide capable of addressing a 2K x 14 program ROM. As a program instruction is executed, the PC will contain the address of the next program instruction to be executed. The PC value is normally increased by one except the followings. The Reset Vector (000h) and the Interrupt Vector (001h) are provided for PC initialization and Interrupt. For CALL/GOTO instructions, PC loads 11 bits address from instruction word. For RET/RETI/RETLW instructions, PC retrieves its content from the top level STACK. For the other instructions updating PC[7:0], the PC[10:8] keeps unchanged. The STACK is 11-bit wide and 6-level in depth. The CALL instruction and Hardware interrupt will push STACK level in order, While the RET/RETI/RETLW instruction pops the STACK level in order.

The data memory is partitioned into two banks, which contain the General Purpose Data Memory and the Special Function Registers (SFR). STATUS.4 is the bank select bits. Each bank extends up to 7Fh (128 bytes). The lower locations of each bank (00h-1Fh) are reserved for the SFR. Above the SFR is General Purpose Data Memory, implemented as static RAM. SFR area is mirrored in all banks for code reduction and quicker access. The first half of RAM (00h – 3Fh) is bit-addressable.

Data memory can be addressed directly or indirectly. Indirect Addressing is made by INDF register. The INDF register is not a physical register. Addressing INDF actually addresses the register whose address is contained in the FSR register (FSR is a pointer). Reading INDF itself indirectly (FSR=0) will produce 00h. Writing to the INDF register indirectly results in a no-operation.

5

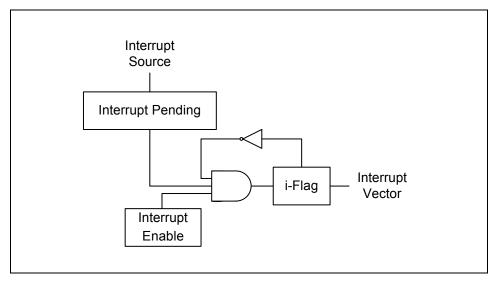
	Program Memory	_	Data M	emory
0000	Reset Vector	00	Registers, ST	ATUS 4-0/1
0001	Interrupt Vector		Registers, 31	
		1F	Dit addit	COSCIDIC
	Program ROM Page0	20	RAM, STATUS.4=0	RAM, STATUS.4=1
7FF		7F	Bit addressable	Bit addressable

< Figure 1-5. Address space >

1.4 ALU and Working (W) Register

The ALU is 8 bits wide and capable of addition, subtraction, shift and logical operations. In two-operand instructions, typically one operand is the W register, which is an 8-bit non-addressable register used for ALU operations. The other operand is either a file register or an immediate constant. In single operand instructions, the operand is either W register or a file register. Depending on the instruction executed, the ALU may affect the values of Carry (C), Digit Carry (DC), and Zero (Z) Flags in the STATUS register. The C and DC flags operate as a /Borrow and /Digit Borrow, respectively, in subtraction.

1.5 STATUS Register

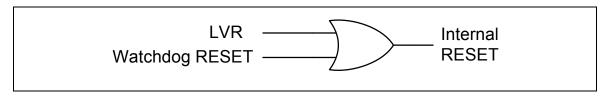

This register contains the arithmetic status of ALU and the Bank select for RAM. The STATUS register can be the destination for any instruction, as with any other register. If the STATUS register is the destination for an instruction that affects the Z, DC or C bits, then the write to these three bits is disabled. These bits are set or cleared according to the device logic. It is recommended, therefore, that only BCF, BSF and MOVWF instructions be used to alter the STATUS Register because these instructions do not affect those bits.

STATUS	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0	
Reset Value	_	1	_	0	_	0	0	0	
R/W	_	ı	_	R/W	_	R/W	R/W	R/W	
Bit				Descr	ription				
7-5	Not Used	(Must be	set to 0)						
	SRAM: S	RAM Ban	k Selection	on Bit					
4	0: Page								
	1: Page	1							
3	Not Used	(Must be	set to 0)						
	Zero Flag	(Z)							
2	0: the re	0: the result of a logic operation is not zero							
	1: the re	sult of a le	ogic opera	ation is ze	ero				
	Decimal (Carry Flag	g or Decin	nal/Borrov	v Flag (Do	C)			
		ADD ins	struction		SUB instruction				
1	1: a carr	y from the	e low nibl	ole bits of	of 1: no borrow				
	the re	sult occui	rred		0: a borrow from the low nibble bits				
0: no carry				of the result occurred					
	Carry Fla	g(C) or Bo	orrow Flag	g					
0		ADD ins	struction		SUB instruction				
	1: a carr	y occurre	d from the	e MSB	1: no bo	rrow			
	0: no ca	rry			0: a bori	row occur	red from t	he MSB	

<Table 1-2. STATUS — System Flags Register (Address: 03H)>

1.6 Interrupt

The TM59PA20 has 1 level, 1 vector and 5 sources. Each interrupt source has its own enable control bit. An interrupt event will set its individual flag. Because TM59PA20 has only 1 vector, there is not a interrupt priority register. The interrupt priority is determined by F/W.


< Figure 1-6. Interrupt Function Diagram >

If the corresponding interrupt enable bit has been set (INTCON), it would trigger CPU to service the interrupt. CPU accepts interrupt in the end of current executed instruction cycle. In the mean while, A "CALL 0001" instruction is inserted to CPU, and the i-flag is set to prevent recursive interrupt nesting. The i-flag is cleared in the instruction after the "RETI" instruction. That is, at least one instruction in main program is executed before service the pending interrupt. The interrupt event is edge trigged. F/W must clear the interrupt event register while serves the interrupt routine.

1.7 Reset

The TM59PA20 can be RESET in four ways.

- Power-On-Reset
- Low Voltage Reset (LVR)
- Watchdog Reset

< Figure 1-7. Reset Circuit Diagram >

After the Power-On-Reset, all system and peripheral control registers are then set to their default hardware Reset values. And the clock source, LVR level is selected by SYSL register value. After the clock source selection, clock oscillation starts, and oscillation stabilization time must be needed. The minimum required oscillation stabilization time is approximately 2.5 ms (f_{OSC} = 10 MHz). The Low Voltage Reset features static reset when supply voltage is below a reference value. The four levels of reference voltage can be configured in SYSL register.

The Watchdog Timer is disabled after Reset. F/W can use the CLRWDT instruction to clear and enable the Watchdog Timer. If once enabled, the Watchdog Timer overflow and generate a chip reset signal if no

CLRWDT executed in a period of 2^{21} oscillator's cycle (0.25 Second for 8.192MHz crystal). The Watchdog Timer does not work in Power-down mode to provide wake-up function. It is only designed to prevent F/W goes into endless loop.

1.8 Power-Down Mode

The Power-down mode is activated by SLEEP instruction. During the Power-down mode, the crystal clock oscillation stops to minimize power consumption and all the peripherals are not working. Therefore, The Power down mode can be terminated by Reset or enabled external Interrupts (External Interrupt 0, 1). When the Power down mode is released, the clock circuit requires oscillation stabilization time also.

PWRDN	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
Reset Value	_	ı	_	_	ı	ı	_	_
R/W	_	ı	_	_	ı	ı	_	_
Bit		Description						
7-0	Power Do	Power Down Control Register						
	This register is not physical register. The device can enter STOP mode by writing any value into this register. The SLEEP instruction is equivalent to "MOVWF PWRDN".							

<Table 1-3. PWRDN — Power Down Control Register (Address: 0AH)>

1.9 System Config Register

The System Config Register (SYSL) is the ROM option for initial condition of the MCU. The address 2000H is virtual address which is not reachable in F/W. It can be written by MDS and system use only. You can config clock source, LVR reference voltage control by SYSL register. The default value of SYSL is 3FFFh. The 13th bit is code protection selection bit. If write this bit to 0, the data of ROM will be all 3FFFh, when user read ROM.

NAME	Bit 13	Bit 7	Bit 6	Bit 5	Bit 4	Bit 3	Bit 2	Bit 1	Bit 0
SYSL	_	1	_	-	_	-	1	_	_
Reset Value	1	1	1	1	1	1	1	1	1
Bit				D	escriptio	n			
13	Code p	rotection	selection	n bit					
	1: No p	rotect							
	0: Code	e protect	ion						
7	Not Us	ed (Must	Set be	1')					
6-5	CSS1	CSS0	CSS1	~0Clock	Source S	Selection	Bit		
	0	0	Extern	al crysta	I / ceram	nic oscilla	ator		
	0	1	Extern	al RC					
	1	0	Interna	al RC (0.	47 MHz	in $V_{DD} =$	5 V)		
	1	1	Interna	al RC (2.	8 MHz ir	$V_{DD} = 5$	(V)		
4-0	LVS: L'	LVS: LVR Level Selection Byte							
	110	001	2.0V						
	110)10	2.3V						
	100		3.0V						
	011	111	3.9V						

<Table 1-4. SYSL — System Config Register (Address: 2000H)>

1.10 Instruction Set

Each instruction is a 14-bit word divided into an OPCODE, which specified the instruction type, and one or more operands, which further specify the operation of the instruction. The instructions can be categorized as byte-oriented, bit-oriented and literal operations list in the following table.

For byte-oriented instructions, "f" represents address designator and "d" represents destination designator. The address designator is used to specify which address in Program memory is to be used by the instruction. The destination designator specifies where the result of the operation is to be placed. If "d" is "0", the result is placed in the W register. If "d" is "1", the result is placed in the address specified in the instruction.

For bit-oriented instructions, "b" represents a bit field designator, which selects the number of the bit affected by the operation, while "f" represents the address designator. For literal operations, "k" represents the literal or constant value.

Field	Description
f	Register File Address
b	Bit address
k	Literal. Constant data or label
d	Destination selection field. 0 : Working register 1 : Register file
W	Working Register
Z	Zero Flag
С	Carry Flag
DC	Decimal Carry Flag
PC	Program Counter
TOS	Top Of Stack
GIE	Global Interrupt Enable Flag (i-Flag)
()	Contents
	Bit Field
←	Assign direction

< Table 1-5. OP-CODE Field Description >

Mnemonic		Op Code	Cycle	Flag Affect	Description			
Byte-Oriented File Register Instruction								
ADDWF	f,d	00 0111 dfff fff		C,DC,Z	Add W and "f"			
ANDWF	f,d	00 0101 dfff fff	f 1	Z	AND W with "f"			
CLRF	f	00 0001 1fff fff	f 1	Z	Clear "f"			
CLRW		00 0001 0100 000	1	Z	Clear W			
COMF	f,d	00 1001 dfff fff	f 1	Z	Complement "f"			
DECF	f,d	00 0011 dfff fff	f 1	Z	Decrement "f"			
DECFSZ	f,d	00 1011 dfff fff	f 1 or 2	-	Decrement "f", skip if zero			
INCF	f,d	00 1010 dfff fff	f 1	Z	Increment "f"			
INCFSZ	f,d	00 1111 dfff fff	f 1 or 2	-	Increment "f", skip if zero			
IORWF	f,d	00 0100 dfff fff	f 1	Z	OR W with "f"			
MOVFW	f	00 1000 Offf fff	f 1	-	Move "f" to "w"			
MOVWF	f	00 0000 1fff fff	f 1	-	Move W to "f"			
RLF	f,d	00 1101 dfff fff	f 1	С	Rotate left "f" through carry			
RRF	f,d	00 1100 dfff fff	f 1	С	Rotate right "f" through carry			
SUBWF	f,d	00 0010 dfff fff	f 1	C,DC,Z	Subtract W from "f"			
SWAPF	f,d	00 1110 dfff fff	f 1	-	Swap nibbles in "f"			
TESTZ	f	00 1000 1fff fff	f 1	Z	Test if "f" is zero			
XORWF	f,d	00 0110 dfff fff	f 1	Z	XOR W with "f"			
		Bit-Orien	ted File Re	egister Instru	ction			
BCF	f,b	01 000b bbff fff	f 1	-	Clear "b" bit of "f"			
BSF	f,b	01 001b bbff fff	f 1	-	Set "b" bit of "f"			
BTFSC	f,b	01 010b bbff fff	f 1 or 2	-	Test "b" bit of "f", skip if clear			
BTFSS	f,b	01 011b bbff fff	f 1 or 2	-	Test "b" bit of "f", skip if set			
		Litera	l and Cont	trol Instructio				
ADDLW	k	01 1100 kkkk kkk	k 1	C,DC,Z	Add Literal "k" and W			
ANDLW	k	01 1011 kkkk kkk	k 1	Z	AND Literal "k" with W			
CALL	k	10 0kkk kkkk kkk	k 2	-	Call subroutine "k"			
CLRWDT		00 0000 1000 100	1 1	-	Clear and enable Watch Dog Timer			
GOTO	k	11 Okkk kkkk kkk	k 2	-	Jump to branch "k"			
IORLW	k	01 1010 kkkk kkk	k 1	Z	OR Literal "k" with W			
MOVLW	k	01 1001 kkkk kkk	k 1	-	Move Literal "k" to W			
NOP		00 0000 0000 000	1	-	No operation			
RET		00 0000 0100 000		-	Return from subroutine			
RETI		00 0000 0110 000	_	-	Return from interrupt			
RETLW	k	01 1000 kkkk kkk	k 2	-	Return with Literal "k" in W			
SLEEP		00 0000 1000 101) 1	-	Go into standby mode, Clock oscillation stops			
XORLW	k	01 1111 kkkk kkk	k 1	Z	XOR Literal "k" with W			

< Table 1-6. Instruction Summary >

ADDLW	Add Literal "k" and W
ADDLII	Add Elicial R alid W

 $\begin{array}{lll} \text{Syntax} & \text{ADDLW k} \\ \text{Operands} & \text{k}: 00\text{h} \sim \text{FFh} \\ \text{Operation} & (\text{W}) \leftarrow (\text{W}) + \text{k} \\ \text{Status Affected} & \text{C, DC, Z} \\ \end{array}$

OP-Code 01 1100 kkkk kkkk

Description The contents of the W register are added to the eight-bit literal 'k' and the

result is placed in the W register.

Cycle 1

Example ADDLW 0x15 B: W = 0x10

A: W = 0x25

ADDWF Add W and 'f'

Syntax ADDWF f [,d] Operands f: $00h \sim 7Fh d: 0, 1$ Operation (Destination) \leftarrow (W) + (f)

Status Affected C, DC, Z

OP-Code 00 0111 dfff ffff

Description Add the contents of the W register with register 'f'. If 'd' is 0, the result is

stored in the W register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ADDWF FSR, 0 B: W = 0x17, FSR = 0xC2

A: W = 0xD9, FSR = 0xC2

ANDLW Logical AND Literal "k" with W

Syntax ANDLW k
Operands k:00h~FFh

Operation $(W) \leftarrow (W)$ 'AND' (f)

Status Affected Z

OP-Code 01 1011 kkkk kkkk

Description The contents of W register are AND'ed with the eight-bit literal 'k'. The

result is placed in the W register.

Cycle 1

Example ANDLW 0x5F B: W = 0xA3

A: W = 0x03

ANDWF AND W with f

Syntax ANDWF f [,d]
Operands $f: 00h \sim 7Fh \quad d: 0, 1$ Operation (Destination) \leftarrow (W) 'AND' (f)

Status Affected Z

OP-Code 00 0101 dfff ffff

Description AND the W register with register 'f'. If 'd' is 0, the result is stored in the W

11

register. If 'd' is 1, the result is stored back in register 'f'.

Cycle 1

Example ANDWF FSR, 1 B: W = 0x17, FSR = 0xC2

A: W = 0x17, FSR = 0x02

BCF	Clear "b" bit of "f"	
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	BCF f [,b] f: 00h ~ 3Fh b: 0 ~ 7 (f.b) \leftarrow 0 - 01 000b bbff ffff Bit 'b' in register 'f' is cleared. 1 BCF FLAG_REG, 7	B : FLAG_REG = 0xC7 A : FLAG_REG = 0x47
BSF	Set "b" bit of "f"	
Syntax Operands Operation Status Affected OP-Code Description Cycle Example	BSF f [,b] f:00h ~ 3Fh b:0 ~ 7 (f.b) ← 1 - 01 001b bbff ffff Bit 'b' in register 'f' is set. 1 BSF FLAG_REG, 7	B : FLAG_REG = 0x0A A : FLAG_REG = 0x8A
BTFSC	Test 'b' bit of 'f', skip if	clear(0)
Syntax Operands Operation Status Affected OP-Code Description Cycle Example		n the next instruction is executed. If bit 'b' in instruction is discarded, and a NOP is
BTFSS	Test "b" bit of "f", skip	if set(1)
Syntax Operands Operation Status Affected OP-Code Description Cycle Example		n the next instruction is executed. If bit 'b' in instruction is discarded, and a NOP is

CALL Call subroutine "k" Syntax CALL k **Operands** K: 00h ~ 7FFh Operation Operation: TOS \leftarrow (PC)+ 1, PC.10 \sim 0 \leftarrow k Status Affected OP-Code 10 0kkk kkkk kkkk Call Subroutine. First, return address (PC+1) is pushed onto the stack. Description The eleven-bit immediate address is loaded into PC bits <10:0>. CALL is a two-cycle instruction. Cycle Example LABEL1 CALL SUB1 B: PC = LABEL1 A: PC = SUB1, TOS = LABEL1+1

CLRF Clear f CLRF f Syntax f: 00h ~ 7Fh Operands (f) \leftarrow 00h, Z \leftarrow 1 Operation Status Affected Ζ OP-Code 00 0001 1fff ffff Description The contents of register 'f' are cleared and the Z bit is set. Cycle $B: FLAG_REG = 0x5A$ Example CLRF FLAG_REG A: $FLAG_REG = 0x00$, Z = 1

CLRW Clear W Syntax **CLRW** Operands Operation $(W) \leftarrow 00h, Z \leftarrow 1$ Status Affected OP-Code 00 0001 0100 0000 W register is cleared and Zero bit (Z) is set. Description Cycle Example **CLRW** B:W=0x5A

A: W = 0x00, Z = 1

CLRWDT Clear Watchdog Timer

SyntaxCLRWDTOperands-OperationWDTE ← 00hStatus Affected-

OP-Code 00 0000 1000 1001

Description CLRWDT instruction enables and resets the Watchdog Timer.

Cycle 1

Example CLRWDT B : WDT counter = ?
A : WDT counter = 0x00

COMF	Complement f		
Syntax Operands	COMF f [,d] f : 00h ~ 7Fh, d : 0, 1		
Operation	$(\text{destination}) \leftarrow (\bar{f})$		
Status Affected OP-Code	Z 00 1001 dfff ffff		
Description	The contents of register 'f' are complemented. If 'd' is 0, the result is stored in W. If 'd' is 1, the result is stored back in register 'f'.		
Cycle	1	· ·	
Example	COMF REG1,0	B : REG1 = 0x13 A : REG1 = 0x13, W = 0xEC	

DECF	Decrement f	
Syntax	DECF f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	(destination) ← (f) - 1	
Status Affected	Z	
OP-Code	00 0011 dfff ffff	
Description	Decrement register 'f'. If 'd' is	0, the result is stored in the W register. If 'd'
	is 1, the result is stored back i	n register 'f'.
Cycle	1	•
Example	DECF CNT, 1	B : $CNT = 0x01, Z = 0$
		A : CNT = 0x00, Z = 1

DECFSZ	Decrement f, Skip if 0
Syntax	DECFSZ f [,d]
Operands	f: 00h ~ 7Fh, d: 0, 1
Operation	(destination) \leftarrow (f) - 1, skip next instruction if result is 0
Status Affected	-
OP-Code	00 1011 dfff ffff
Description	The contents of register 'f' are decremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'. If the result is 1, the next instruction is executed. If the result is 0, then a NOP is executed instead, making it a 2 cycle instruction.
Cycle	1 or 2
Example	LABEL1 DECFSZ CNT, 1 B : PC = LABEL1
	GOTO LOOP A: CNT = CNT – 1
	CONTINUE if CNT=0, PC = CONTINUE
	if CNT≠0, PC = LABEL1+1

GOTO	Unconditional Branch	
Syntax	GOTO k	
Operands	k : 00h ~ 7FFh	
Operation	PC.10~0 ← k	
Status Affected	-	
OP-Code	11 Okkk kkkk kkkk	
Description	GOTO is an unconditional be	ranch. The 11-bit immediate value is loaded
	into PC bits <10:0>. GOTO i	s a two-cycle instruction.
Cycle	2	•
Example	LABEL1 GOTO SUB1	B : PC = LABEL1
-		A · PC = SUB1

14

INCF	Increment f	
Syntax	INCF f [,d]	
Operands	f : 00h ~ 7Fh	
Operation	$(destination) \leftarrow (f) + 1$	
Status Affected	Ž	
OP-Code	00 1010 dfff ffff	
Description	The contents of register 'f' are incremented. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	•
Example	INCF CNT, 1	B: CNT = $0xFF$, $Z = 0$
•		A: $CNT = 0x00, Z = 1$

INCFSZ	Increment f,	Skip	if 0

Syntax	NCFSZ f [,d]	
Operands	: 00h ~ 7Fh, d : 0, 1	
Operation	destination) ← (f) + 1, skip next instruction if result is 0	
Status Affected	, ,, ,	
OP-Code	0 1111 dfff ffff	
Description	he contents of register 'f' are incremented. If 'd' is 0, the result is the W register. If 'd' is 1, the result is placed back in register 'f' esult is 1, the next instruction is executed. If the result is 0, a NC executed instead, making it a 2 cycle instruction.	. If the
Cycle	or 2	
Example	ABEL1 INCFSZ CNT, 1 B : PC = LABEL1	
	GOTO LOOP A: CNT = CNT + 1	
	CONTINUE if CNT=0, PC = CONTINUI	E

IORLW Inclusive OR Literal with W

Syntax	IORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) OR k$	
Status Affected	Ž	
OP-Code	01 1010 kkkk kkkk	
Description	The contents of the versult is placed in the	W register is OR'ed with the eight-bit literal 'k'. The e W register.
Cycle	1	
Example	IORLW 0x35	B : W = 0x9A A : W = 0xBF, Z = 0

IORWF Inclusive OR W with f

Syntax	IORWF f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	(destination) ← (W) OR	k
Status Affected	Ż	
OP-Code	00 0100 dfff ffff	
Description	Inclusive OR the W register with register 'f'. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is placed back in register 'f'.	
Cycle	1	•
Example	IORWF RESULT, 0	B : RESULT = 0x13, W = 0x91 A : RESULT = 0x13, W = 0x93, Z = 0

if CNT≠0, PC = LABEL1+1

MOVFW	Move f to W	
Syntax	MOVFW f	
Operands	f : 00h ~ 7Fh	
Operation	$(W) \leftarrow (f)$	
Status Affected	-	
OP-Code	00 1000 Offf ffff	
Description	The contents of register f are moved to W register.	
Cycle	1	•
Example	MOVF FSR, 0	B:W=?
•		A: W \leftarrow f, if W = 0 Z = 1

MOVLW Move Literal to W

	=	
Syntax	MOVLW k	
Operands	k : 00h ~ FFh	
Operation	(W) ← k	
Status Affected	-	
OP-Code	01 1001 kkkk kkkk	
Description	The eight-bit literal 'k' assemble as 0's.	is loaded into W register. The don't cares will
Cycle	1	
Example	MOVLW 0x5A	B : W = ?
		A:W=0x5A

MOVWF Move W to f

MOVWE	MOVE WITO I		
Syntax	MOVWF f		
Operands	f : 00h ~ 7Fh		
Operation	$(f) \leftarrow (W)$		
Status Affected	d -		
OP-Code	00 0000 1fff ffff		
Description	Move data from W register to register 'f'.		
Cycle	1		
Example	MOVWF REG1	B : REG1 = $0xFF$, W = $0x4F$	
		A : REG1 = $0x4F$, W = $0x4F$	

NOP No Operation

Syntax	NOP
Operands	-
Operation	No Operation
Status Affected	Z
OP-Code	00 0000 0000 0000
Description	No Operation
Cycle	1
Example	NOP -
•	

RETI	Return from Interrupt	
Syntax	RETI	
Operands	-	
Operation	PC ← TOS, GIE ← 1	
Status Affected	- -	
OP-Code	00 0000 0110 0000	
Description	Return from Interrupt. Stack is POPed and Top-of-Stack (TOS) is loaded	
	in to the PC. Interrupts a	re enabled. This is a two-cycle instruction.
Cycle	2	·
Example	RETFIE	A : PC = TOS, GIE = 1

RETLW Return with Literal in W

KLILVV	Retuin With Literal in W	
Syntax	RETLW k	
Operands	k : 00h ~ FFh	
Operation	$PC \leftarrow TOS$, $(W) \leftarrow k$	
Status Affected	-	
OP-Code	01 1000 kkkk kkkk	
Description	•	he eightbit literal 'k'. The program counter ack (the return address). This is a two-
Cycle	2	
Example	CALL TABLE	B: $W = 0x07$
	:	A:W = value of k8
	TABLE ADDWF PCL,1	
	RETLW k1	
	RETLW k2	
	:	
	RETLW kn	

RET	Poturn	from	Subroutine
KEI	Return	IIOIII	Suproutine

Syntax	RET	
Operands	-	
Operation	PC ← TOS	
Status Affected	-	
OP-Code	00 0000 0100 0000	
Description	Return from subrouti	ne. The stack is POPed and the top of the stack
·	(TOS) is loaded into	the program counter. This is a two-cycle instruction.
Cycle	Ž ´	
Example	RETURN	A : PC = TOS

RLF Rotate Left f through Carry

Syntax RLF f [,d] Operands f: $00h \sim 7Fh$, d: 0, 1

Operation 1.001 ~ 7FII, d . 0, 1

C Register f

Status Affected C

OP-Code 00 1101 dfff ffff

Description The contents of register 'f' are rotated one bit to the left through the Carry

Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the result is

stored back in register 'f'.

Cycle 1

Example RLF REG1,0 B: REG1 = 1110 0110, C = 0

A: REG1 = 1110 0110 W = 1100 1100, C = 1

RRF Rotate Right f through Carry

Syntax RRF f [,d]

Operands $f: 00h \sim 7Fh, d: 0, 1$

С

Operation C Register f

Status Affected

OP-Code 00 1100 dfff ffff

Description The contents of register 'f' are rotated one bit to the right through the

Carry Flag. If 'd' is 0, the result is placed in the W register. If 'd' is 1, the

result is placed back in register 'f'.

Cycle 1

Example RRF REG1,0 B: REG1 = 1110 0110, C = 0

A: REG1 = 1110 0110

W = 0111 0011, C = 0

SLEEP Go into standby mode, Clock oscillation stops

Syntax SLEEP
Operands Operation Status Affected -

OP-Code 00 0000 1000 1010

Description Go into SLEEP mode with the oscillator stopped.

Cycle

Example SLEEP -

SUBWF	Subtract W from f	
Syntax	SUBWF f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	$(destination) \leftarrow (f) - (W)$	
Status Affected	C, DC, Z	
OP-Code	00 0010 dfff ffff	
Description		hod) W register from register 'f'. If 'd' is 0, gister. If 'd' is 1, the result is stored back in
Cycle	1	
Example	SUBWF REG1,1	B : REG1 = 3, W = 2, C = ?, Z = ? A : REG1 = 1, W = 2, C = 1, Z = 0
	SUBWF REG1,1	B : REG1 = 2, W = 2, C = ?, Z = ? A : REG1 = 0, W = 2, C = 1, Z = 1
	SUBWF REG1,1	B: REG1 = 1, W = 2, C = ?, Z = ? A: REG1 = FFh, W = 2, C = 0, Z = 0

|--|

Syntax	SWAPF f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	(destination,7~4) ← (f.3	3~0), (destination.3~0) ← (f.7~4)
Status Affected	<u>-</u>	
OP-Code	00 1110 dfff ffff	
Description		bbles of register 'f' are exchanged. If 'd' is 0, the
	result is placed in W re	gister. If 'd' is 1, the result is placed in register 'f'.
Cycle	1	
Example	SWAPF REG, 0	B : REG1 = 0xA5

A : REG1 = 0xA5, W = 0x5A

TESTZ Test if 'f' is zero

	100111 1 10 2010					
Syntax	TESTZ f					
Operands	f : 00h ~ 7Fh					
Operation	Set Z flag if (f) is 0					
Status Affected	Z					
OP-Code	00 1000 1fff ffff					
Description	If the content of register 'f' is 0, Zero flag is set to 1.					
Cycle	1	-				
Example	TESTZ REG1	B: REG1 = 0, Z = ?				
-		A : REG1 = 0, Z = 1				
•		A : REG1 = 0, Z = 1				

XORLW Exclusive OR Literal with W

Syntax	XORLW k	
Operands	k : 00h ~ FFh	
Operation	$(W) \leftarrow (W) XOR k$	
Status Affected	Ż	
OP-Code	01 1111 kkkk kkkk	
Description	The contents of the W r result is placed in the W	egister are XOR'ed with the eight-bit literal 'k'. The register.
Cycle	1	•
Example	XORLW 0xAF	B:W=0xB5
		A:W=0x1A

XORWF	Exclusive OR W wi	th f
Syntax	XORWF f [,d]	
Operands	f: 00h ~ 7Fh, d: 0, 1	
Operation	(destination) ← (W) XO	R (f)
Status Affected	Z	
OP-Code	00 0110 dfff ffff	
Description		nts of the W register with register 'f'. If 'd' is 0, the register. If 'd' is 1, the result is stored back in
Cycle	1	
Example	XORWF REG 1	B : REG = $0xAF$, W = $0xB5$
		A : REG = $0x1A$, W = $0xB5$

2. Control Register

Description	Mnemonic	Dec	Hex	R/W
System Config Reg Low	SYSL	-	2000	-
Indirect File Reg	INDF	0	00H	-
Timer 0 Counter Reg	T0CNT	1	01H	R
Program Counter Low	PCL	2	02H	R/W
System Flags Reg	STATUS	3	03H	R/W
File Select Reg	FSR	4	04H	R/W
Port A Data Reg	PAD	5	05H	R/W
Port B Data Reg	PBD	6	06H	R/W
Port C Data Reg	PCD	7	07H	R/W
Clock control Reg	CLKCON	8	08H	R/W
WatchDog Timer Control Reg	WDTE	9	09H	-
Stop mode Control Reg	PWRDN	10	0AH	_
Interrupt Control Reg	INTCON	11	0BH	R/W
Interrupt Pending Reg	INTPND	12	0CH	R/W
External Interrupt Signal Control Reg	PINTD	13	0DH	R/W
Timer 0 Control Reg	T0CON	14	0EH	R/W
Timer 0 Data Reg	T0DATA	15	0FH	R/W
PWM 0 Control Reg	PWM0CON	16	10H	R/W
PWM 0 Data Reg	PWM0DAT	17	11H	R/W
PWM 1 Control Reg	PWM1CON	18	12H	R/W
PWM 1 Data Reg	PWM1DAT	19	13H	R/W
Buzzer Control Reg	BZCON	20	14H	R/W
Port A Control Reg Low	PACONL	21	15H	R/W
Port A Control Reg High	PACONH	22	16H	R/W
Port B Control Reg	PBCON	23	17H	R/W
Port C Control Reg Low	PCCONL	24	18H	R/W
Port C Control Reg High	PCCONH	25	19H	R/W
ADC Control Reg	ADCCON	26	1AH	R/W
ADC DATA Reg Low	ADCDATL	27	1BH	R
ADC DATA Reg High	ADCDATH	28	1CH	R
Location 1DH is factory use only				•
General Purpose Register 0	GPR0	30	1EH	R/W
General Purpose Register 1	GPR1	31	1FH	R/W

Address: 1AH

ADCCON — A/D Converter Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R	R/W	R/W	R/W	

Bit		Description								
7-4	Input	Input Pin Selection Bits								
	0	0	0	0	ADC0 (PA.0)					
	0	0	0	1	ADC1 (PA.1)					
	0	0	1	0	ADC2 (PA.2)					
	0	0	1	1	ADC3 (PA.3)					
	0	1	0	0	ADC4 (PA.4)					
	0	1	0	1	ADC5 (PA.5)					
	0	1	1	0	ADC6 (PA.6)					
	0	1	1	1	ADC7 (PA.7)					
	1	0	0	0	ADC8 (PC.6)					
	1	0	0	1	ADC9 (PC.5)					
	1	1	1	1	Connected with V _{DD} internally					
		Oth	Others Connected with GND internally							
3	End-	of-Co	nversi	ion St	atus Bit					
	0	A/D) conv	ersion	is in progress					
	1		A/D conversion complete							
2-1	Clock	c Sou	rce Se	electio	on Bit ^(NOTE 1)					
	0	0	0 f _{OSC} /16							
	0	1	f _{OSC} /8							
	1	0	f _{OSC} /4							
	1	1	f _{osc} /1							
0	Conv	version Start Bit								
	0	No meaning								
	1	A/D conversion start								
NOTE ·										

NOTE:

1. Maximum ADC Input Clock is 4MHz.

Address: 1BH

Address: 1CH

Address: 14H

ADCDATL — ADC Data Register Low Byte

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	_	_	_	_	_	_	
R/W	_	_	_	_	_	_	R	R	

Bit		Description								
1-0	ADC Data	ADC Data Low Byte								
	XX	ADC Data Value Lower 2Bit								

ADCDATH — ADC Data Register High Byte

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	-	_	-	_	-	_	
R/W	R	R	R	R	R	R	R	R	

Bit		Description								
7-0	ADC Data High B	ADC Data High Byte								
	XXXXXXXX	ADC Data Value Higher 8Bit								

BZCON — Buzzer Out Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit		Description								
7-6	Input	Clock	k Selection							
	0	0	f _{OSC} / 8							
	0	1	f _{OSC} / 16							
	1	0	f _{OSC} / 32							
	1	1	f _{OSC} / 64							
5-0	Buzz	er Per	iod Data							
	XXX	XXX	Period Data							

Address: 08H

Address: 04H

Address: 1EH/1FH

CLKCON — Clock Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	-	_	_	_	_	0	0	
R/W	R/W	_	_	_	_	_	R/W	R/W	

Bit		Description									
7	Syste	System Divider Clear bit									
	0	No	No effect								
	1	Cle	Clear Divider (Auto Clear)								
6-2	Not U	Not Used									
1-0	Divid	Divided by Selection Bits for CPU Clock frequency									
	0	0 Divide by f _{OSC} /16									
	0	1 Divide by f _{OSC} /8									
	1	0 Divide by f _{OSC} /4									
	1	1	Divide by f _{OSC} /2								

FSR — File Select Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	-	_	_	_	-	1	
R/W	_	R/W							

Bit		Description							
7	Not Used	lot Used							
6-0	File Select Regi	File Select Register							
	000 0000	000 0000 Not Used.							
	1 ~ 7Fh	Indirect Addressing Location							

GPR0/1 — General Purpose Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	General Purpose Register
	GPR0, GPR1 are mirrored all bank. It is useful to pass arguments to SUB routine or backup Working register (W) and STATUS register in ISR or SUB routine.

Address: 0BH

Address: 0CH

INTCON — Interrupt Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	_	_	0	0	0	0	0	
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W	

Bit		Description
7-5	Not U	sed
4	PWM	1 Overflow Interrupt Enable Bit
	0	PWM 1 Interrupt Disable
	1	PWM 1 Interrupt Enable
3	PWM	0 Overflow Interrupt Enable Bit
	0	PWM 0 Interrupt Disable
	1	PWM 0 Interrupt Enable
2	Time	^r 0 Interrupt Enable Bit
	0	Timer 0 Interrupt Disable
	1	Timer 0 Interrupt Enable
1	Port A	A.1 EXTINT1 Interrupt Enable Bit
	0	EXTINT1 Interrupt Disable
	1	EXTINT1 Interrupt Enable
0	Port /	A.0 EXTINT0 Interrupt Enable Bit
	0	EXTINT0 Interrupt Disable
	1	EXTINT0 Interrupt Enable

INTPND — Interrupt Pending Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	0	0	0	0	0	
R/W	_	_	_	R/W	R/W	R/W	R/W	R/W	

Bit		Description
7-5	Not U	sed
4	PWM	1 Overflow Interrupt Pending Bit
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
3	PWM	0 Overflow Interrupt Pending Bit
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
2	Time	r 0 Interrupt Pending Bit
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
1	Port A	A.1 EXTINT1 Interrupt Pending Bit
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)
0	Port A	A.0 EXTINT0 Interrupt Pending Bit
	0	No interrupt pending (read) / Pending bit clear (write)
	1	Interrupt is pending (read) / No effect (write)

Address: 15H

PACONL — Port A Control Register (Low Byte)

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit			Description						
7-6	Port A	A.3 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable)						
	0	1	Schmitt trigger input						
	1	0	Push-pull output						
	1	1	ADC3 Input (Schmitt trigger input off)						
5-4	Port A	A.2 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable)						
	0	1	Schmitt trigger input						
	1	0	Push-pull output						
	1	1	ADC2 Input (Schmitt trigger input off)						
3-2	Port A	A.1 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable) / External Interrupt 1 Input						
	0	1	Schmitt trigger input / External Interrupt 1 Input						
	1	0	Push-pull output						
	1	1	ADC1 Input (Schmitt trigger input off)						
1-0	Port A	A.0 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable) / External Interrupt 0 Input						
	0	1	Schmitt trigger input / External Interrupt 0 Input						
	1	0	Push-pull output						
	1	1	ADC0 Input (Schmitt trigger input off)						

Address: 16H

PACONH — Port A Control Register (High Byte)

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit			Description						
7-6	Port A	A.7 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable)						
	0	1	PWM 1 output						
	1	0	Push-pull output						
	1	1	ADC7 Input (Schmitt trigger input off)						
5-4	Port A	A.6 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable)						
	0	1	PWM 0 output						
	1	0	Push-pull output						
	1	1	ADC6 Input (Schmitt trigger input off)						
3-2	Port A	Port A.5 Configuration Bits							
	0	0	Schmitt trigger input (pull-up enable)						
	0	1	Schmitt trigger input						
	1	0	Push-pull output						
	1	1	ADC5 Input (Schmitt trigger input off)						
1-0	Port A	A.4 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up enable)						
	0	1	Schmitt trigger input						
	1	0	Push-pull output						
	1	1	ADC4 Input (Schmitt trigger input off)						

Address: 17H

PBCON — Port B Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	0	0	1	0	0	1	
R/W	_	_	_	_	_	_	_	_	

Bit				Description					
7-6	Not U	Ised							
5-3	Port I	B.1 C	onfigu	ration Bits					
	0	0	0	Schmitt trigger input (pull-up enable)					
	0	0	1	Schmitt trigger input					
	0	1	0	Push-pull output					
	0	1	1	Schmitt trigger input (pull-down)					
	1	0	0	Open-drain Output					
	Other Value			Not Used					
2-0	Port I	B.0 C	onfigu	ration Bits					
	0	0	0	Schmitt trigger input (pull-up enable)					
	0	0	1	Schmitt trigger input					
	0	1	0	Push-pull output					
	0 1 1		1	Schmitt trigger input (pull-down)					
	1	0	0	Open-drain Output					
	Oth	ner Va	lue	Not Used					

Address: 18H

PCCONL — Port C Control Register (Low Byte)

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit			Description						
7-6	Port	C.3 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up)						
	0	1	Not Used						
	1	0	Push-pull output						
	1	1	Open-drain output						
5-4	Port	C.2 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up)						
	0	1	Not Used						
	1	0	Push-pull output						
	1	1	Open-drain output						
3-2	Port	C.1 C	onfiguration Bits						
	0	0	Schmitt trigger input (pull-up)						
	0	1	Buzzer Out						
	1	0	Push-pull output						
	1	1	Open-drain output						
1-0	Port	C.0 C	onfiguration Bits						
	0	0	Schmitt trigger input(pull-up)						
	0	1	Not Used						
	1	0	Push-pull output						
	1	1	T0 match output						

Address: 19H

PCCONH — Port C Control Register (High Byte)

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit				Description
7-5	Port	C.6 C	onfigu	rration Bits
	0	0	0	Schmitt trigger input (pull-up)
	0	0	1	Schmitt trigger input
	0	1	Χ	ADC8 Input
	1	0	0	Push-pull output
	1	0	1	Open-drain output (pull-up)
	1	1	0	Open-drain output
	1	1	1	Clock Output
4-2	Port	C.5 C	onfigu	rration Bits
	0	0	0	Schmitt trigger input (pull-up)
	0	0	1	Schmitt trigger input
	0	1	Х	ADC9 Input
	1	0	0	Push-pull output
	1	0	1	Open-drain output (pull-up)
	1	1	0	Open-drain output
	1	1	1	Not Used
1-0	Port	C.4 C	onfigu	rration Bits
	0	0	Sch	nmitt trigger input (pull-up)
	0	1	Sch	nmitt trigger input
	1	0	Pus	sh-pull output
	1	1	Оре	en-drain output

PAD — Port A Data Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	Port A.7-0 Data Bits

Address: 05H

Address: 06H

Address: 07H

Address: 02H

PBD — Port B Data Register

	Bit	7	6	5	4	3	2	1	0	Related Register
Res	set Value	_	_	_	_	_	0	0	0	
	R/W	_	_	_	_	_	_	_	_	

Bit	Description
7-3	Not Used
2-0	Port B.2-0 Data Bits

PCD — Port C Data Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	0	0	0	0	0	0	0	
R/W	_	R/W							

Bit		Description
7		Not Used
6-0)	Port C.6-0 Data Bits

PCL — Program Counter Low Byte

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit	Description
7-0	Program Counter Low Byte
	This register represents Lower 8-Bit of PC+1. The PC can be changed writing any value (00h~FFh) into this register. It is similar to GOTO instruction. But the branch instruction by PCL can access only higher address than PC.

Address: 0DH

Address: 10H

PINTD — External Interrupt Signal Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	_	_	0	0	0	0	
R/W	_	_	_	_	R/W	R/W	R/W	R/W	

Bit		Description										
7-4	Not U	Not Used										
3-2	Exter	External Interrupt 1 Input Signal Selection Bits										
	0	0	Falling Edge									
	0	1	Rising Edge									
	1	Х	Both Edge									
1-0	Exter	nal In	terrupt 0 Input Signal Selection Bits									
	0	0	Falling Edge									
	0	1	Rising Edge									
	1	Х	Both Edge									

PWM0CON — PWM0 Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	0	0	_	0	0	0	
R/W	_	_	R/W	R/W	_	R/W	R/W	R/W	

Bit		Description								
7-6	Not U	Not Used								
5-4	PWM	PWM0 Input Clock Selection Bit								
	0	0	f _{OSC} / 64							
	0	1	f _{OSC} / 8							
	1	0	f _{OSC} / 2							
	1	1	f _{osc} / 1							
3	Not U	sed								
2	PWM	PWM0 DATA Reload Interval Selection Bit								
	0	Rel	oad from 8-bit up counter overflow							
	1	Rel	oad from 6-bit up counter overflow							
1	PWM	0 Cou	nter Clear Bit (Auto Cleared)							
	0	No	effect							
	1	Clear the PWM counter (when write)								
0	PWM	/M0 Enable Bit								
	0	Sto	p counter							
	1	Sta	rt (Resume countering)							

Address: 11H

Address: 12H

PWM0DAT — PWM0 Data Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit		Description									
7-2	PWM	PWM Period Data									
	XXX	XXX	Period Data								
1-0	Exter	nsion	Cycle Selection Bit								
	0	0									
	0	1	2								
	1	0	1, 3								
	1	1	1, 2, 3								

PWM1CON — PWM1 Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	1	0	0	0	
R/W	R/W	R/W	R/W	R/W	_	R/W	R/W	R/W	

Bit		Description								
7-6	PWM	1 Exte	ension Cycle Selection Bit							
	0	0								
	0	1	2							
	1	0	1, 3							
	1	1	1, 2, 3							
5-4	PWM	1 Inpu	ut Clock Selection							
	0	0	f _{osc} / 64							
	0	1	f _{osc} / 8							
	1	0	f _{osc} / 2							
	1	1	f _{osc} / 1							
3	Not U	sed								
2	PWM	1 DA	TA Reload Interval Selection Bit							
	0	Rel	oad from 10-bit up counter overflow							
	1	Rel	oad from 8-bit up counter overflow							
1	PWM	1 Cou	inter Clear Bit (Auto Cleared)							
	0	No	effect							
	1	Cle	ar the PWM counter (when write)							
0	PWM1 Enable Bit									
	0	Sto	p counter							
	1	Sta	rt (Resume counting)							

Address: 13H

Address: 0AH

PWM1DAT — PWM1 Data Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

Bit		Description								
7-0	PWM1 Period Da	ata Low Byte								
	XXXXXXXX	Period Data								

PWRDN — Power Down Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	-	-	-	-	-	-	
R/W	-	-	-	-	-	-	-	-	

Bit	Description							
7-0 Power Down Control Register								
	This register is not physical register. The device can enter STOP mode by writing any value into this register. The SLEEP instruction is equivalent to "MOVWF PWRDN".							

Address: 03H

STATUS — System Flags Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	_	_	_	0	_	0	0	0	
R/W	_	_	_	R/W	_	R/W	R/W	R/W	

Bit		Desc	cription								
7-5	Not U	Not Used (Must be set to 0)									
4	SRAI	SRAM Bank Selection Bit									
	0	0 Page 0									
	1	Page 1									
3	Not U	sed (Must be set to 0)									
2	Zero	Flag(Z)									
	0	The result of a logic operation	is not zero								
	1	The result of a logic operation	is zero								
	Decir	Decimal Carry Flag or Decimal/Borrow Flag (DC)									
		ADD instruction	SUB instruction								
1		a carry from the low nibble bits	1: no borrow								
		of the result occurred	0: a borrow from the low nibble bits of								
		no carry	the result occurred								
	Carry	Flag(C) or Borrow Flag									
0		ADD instruction	SUB instruction								
	1: a	carry occurred from the MSB	1: no borrow								
	0: r	no carry	0: a borrow occurred from the MSB								

Address: 2000H

SYSL — System Config Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W	_	_	_	_	_	_	_	_	

Bit		Description							
13	Code p	Code protection selection bit							
	1	No pr	No protect						
	0	Code	protection						
7	Not Us	ed (Mu	st Set be '1')						
6-5	Clock	Clock Source Selection Bit							
	CSS1	CSS0	CSS1 ~ 0 Clock Source Selection Bit						
	0	0	External crystal / ceramic oscillator						
	0	1	External RC						
	1	0	Internal RC (0.47 MHz in V _{DD} = 5 V)						
	1	1	Internal RC (2.8 MHz in $V_{DD} = 5 \text{ V}$)						
4-0	LVS: LVR Level Selection Bit								
	110	001	2.0V						
	110	010	2.3V						
	100	001	3.0V						
	01	111	3.9V						

T0CON — TIMER 0 Control Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	-	-	0	0	-	_	_	0	
R/W	_	_	R/W	R/W	_	_	_	R/W	

Bit		Description									
7-6	Not U	Not Used									
5-4	Time	Timer 0 Input Clock Selection Bits									
	0	0	f _{OSC} /4096								
	0	1	f _{OSC} /256								
	1	0	f _{OSC} /8								
	1	1	f _{OSC} /1								
3-1	Not U	Ised									
0	Time	Timer 0 Counter Clear Bit									
	0	No	No effect								
	1	Cle	ar the timer 0 counter (when write)								

Address: 0EH

Address: 01H

Address: 0FH

Address: 09H

T0CNT — TIMER 0 Counter Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	0	0	0	0	0	0	0	0	
R/W	R	R	R	R	R	R	R	R	

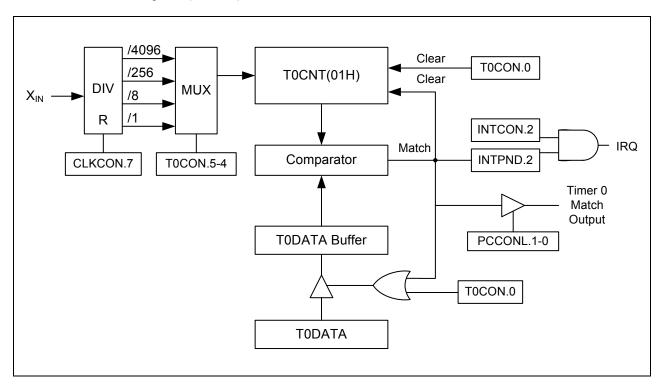
Bit	Description
7-0	Timer 0 Counter Value

T0DATA — TIMER 0 Data Register

Bit	7	6	5	4	3	2	1	0	Related Register
Reset Value	1	1	1	1	1	1	1	1	
R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	R/W	

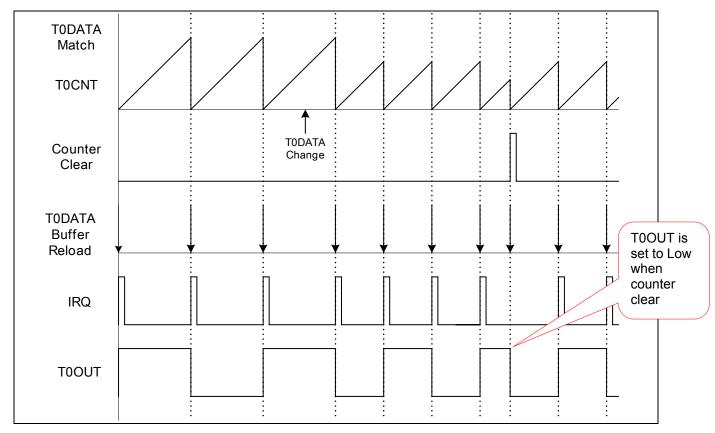
Bit	Description
7-0	Period Data

WDTE — WatchDog Timer Control Register

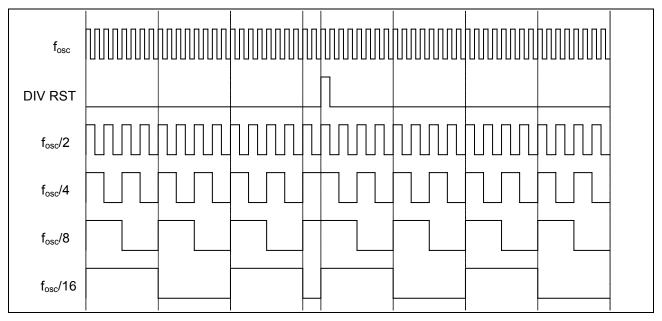

	Bit	7	6	5	4	3	2	1	0	Related Register
	Reset Value	-	_	-	-	_	-	_	_	
ĺ	R/W	_	_	_	_	_	_	_	_	

Bit	Description
7-0	WatchDog Timer Control Register
	This register is not physical register. The WatchDog timer can be enabled and refreshed by CLRWDT or writing any value into this register. The CLRWDT instruction is equivalent to "MOVWF WDTE".

3. 8-Bit Timer


TIMER0 has the following functional components:

- Clock frequency selector
- 8-bit counter (T0CNT), 8-bit comparator, 8-bit data register (T0DATA), and T0DATA buffer.
- TIMER0 control register (T0CON)



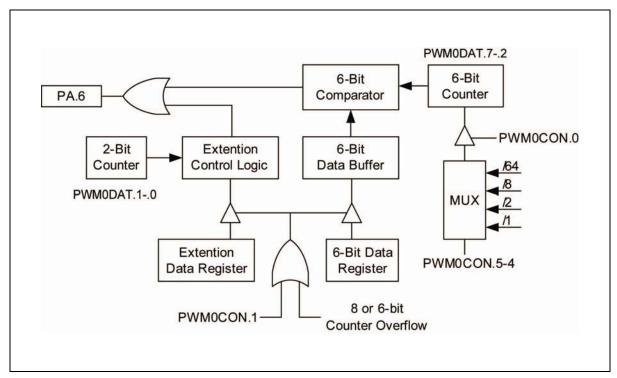
< Figure 3-1 Block Diagram >

T0CON is used to select input clock frequency, to clear the timer 0 counter. Interrupt enable and pending bit for Timer0 interrupt is controlled by INTCON and INTPND. In interval timer mode, a match signal is generated when the counter value is identical to the value T0DATA. The match signal generates a TIMER0 match interrupt, clears the counter and counting resumes. If the TIMER0 interrupt is disabled (INTCON.2 = 0), the match signal do not generates match interrupt request. The clock divider is not the constituent of Timer 0, then the divided clock is asynchronous with Timer interrupt enable signal. Therefore, there is discrepancy in first match interval. To minimize this discrepancy, divider reset can be used (CLKCON).

< Figure 3-2 Timimg diagram >

< Figure 3-3 Divider reset >

Example 3-1> Timer 0 Sample Code (fosc = 8.192 MHz, Interval = 1ms, T0OUT = 500 Hz)


```
01h
     org
int_vector:
     BTFSS
            INTCON, 2 ; Timer 0 Interrupt Check
     GOTO
            ; Timer 0 Interrupt Rotine
NEXT_INT:
     RETI
     MOVLW
            1Fh
                      ; Set TODATA 1FH
     MOVWF
            TODATA
            00010000b
     MOVLW
                      ; fosc/256
     MOVWF
            T0CON
                      ; Set TOCON Control Register
     BSF
            TOCON, 0 ; TimerO Counter Clear
            PCCONL, 0 ; Select PX.0 match output.
     BSF
     BSF
            PCCONL, 1 ; PCCONL Bit [1-0]:[11] is match output
     BSF
            INTCON, 2 ; Timer0 Interrupt Enable
```

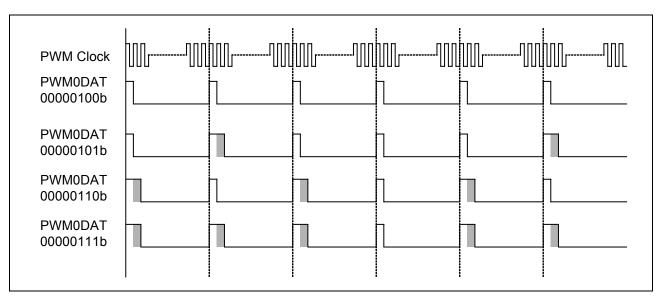
8-Bit PWM

PWM0 has the following functional components:

- Clock frequency selector
- 8-bit up-counter, 6-bit comparator, 6-bit data register and 6-bit data buffer.
- 2-bit extension control logic, 2-bit extension register and extension data buffer.
- Control register (PWM0CON)

To determine the PWM0 operating frequency, the upper 6-bits of counter is compared to the PWM0 data register (PWM0DAT.7–.2). In order to achieve higher resolutions, the lower 2-bits of the counter can be used to modulate the "extended" cycle.

< Figure 4-1 Block Diagram >


The PWM output signal toggles to Low level whenever the lower 6-bit of counter matches the reference data register (PWM0DAT.7–.2). If the value in the PWM0DAT.7–.2 register is not zero, an overflow of the lower 6-bits of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference data register determines the module's base duty cycle.

The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register (PWM0DAT.1–.0). This lower 2-bits of counter value is used to "extend" the duty cycle of the PWM output. The "extension" value is one extra clock period at specific cycles (see Table 4-1).

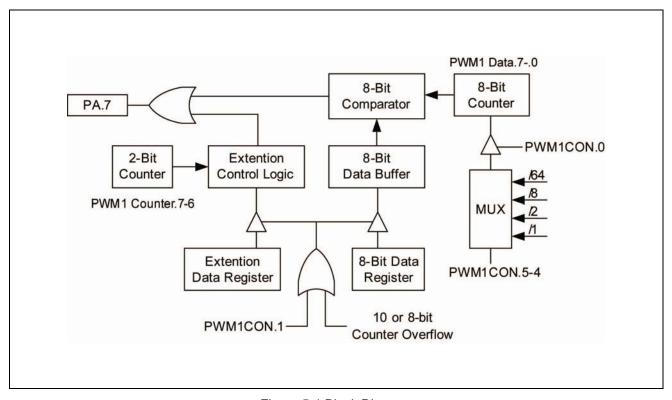
PWM0DAT.1-0	Extended Cycle
00	None
01	2
10	1, 3
11	1, 2, 3

< Table 4-1 PWM output extended cycle >

For example, if the value in the extension data register is '01B', the 2nd cycle will be one pulse longer than the other 3 cycles. (see Figure 4-2).

< Figure 4-2 Extended Output >

Example 4-1> PWM0 Sample Code (f_{OSC} = 8 MHz, 1 Cycle = $500\mu s$, Extend 2nd Cycle)


```
MOVLW
         05h
                     ; Set PWM0 Data Register
MOVWF
         PWM0DAT
                      ; Data = 1, Extension = 1
CLRF
         PACONH
                      ; Select PACONH.54 '01' PWM0 Out.
BSF
         PACONH, 4
CLRF
         PWM0CON
                      ; fosc/64, 8-bit Overflow Reload, PWM Stop
BSF
         PWM0CON, 1
                     ; PWM0 Counter Clear
BSF
         PWM0CON, 0
                     ; PWM0 Start
BCF
         PWM0CON, 0
                     ; PWM0 Stop
```

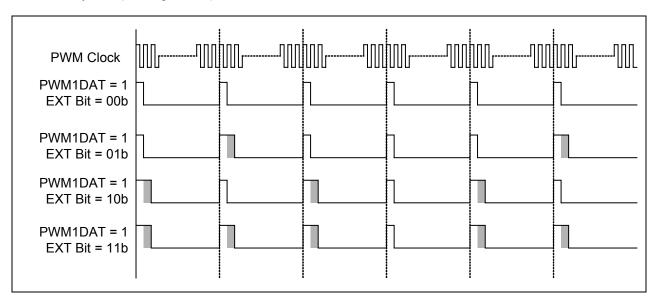
10-Bit PWM

PWM1 has the following functional components:

- Clock frequency selector
- 10-bit up-counter, 8-bit comparator, 8-bit data register and 8-bit data buffer.
- 2-bit extension control logic, 2-bit extension register and extension data buffer.
- Control register (PWM1CON)

To determine the PWM1 operating frequency, the upper 8-bit counter is compared to the PWM1 data register (PWM1DAT). In order to achieve higher resolutions, the 2-bits of the counter can be used to modulate the "extended" cycle.

< Figure 5-1 Block Diagram >


The PWM output signal toggles to Low level whenever the lower 8-bit of counter matches the reference data register (PWM1DAT). If the value in the PWM1DAT register is not zero, an overflow of the lower 8-bits of counter causes the PWM output to toggle to High level. In this way, the reference value written to the reference data register determines the module's base duty cycle.

The value in the upper 2-bits of counter is compared with the extension settings in the 2-bit extension data register (PWM1CON.7-6). This lower 2-bits is used to "extend" the duty cycle of the PWM output. The "extension" value is one extra clock period at specific cycles (see Table 5-1).

PWM1CON.7-6	Extended Cycle
00	None
01	2
10	1, 3
11	1, 2, 3

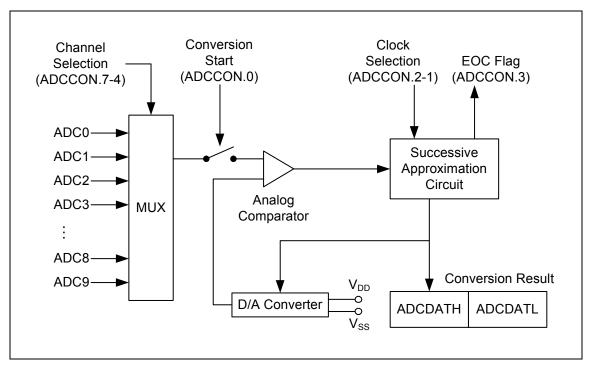
< Table 5-1 PWM output extended cycle >

For example, if the value in the extension data register is '01B', the 2nd cycle will be one pulse longer than the other 3 cycles. (see Figure 5-2).

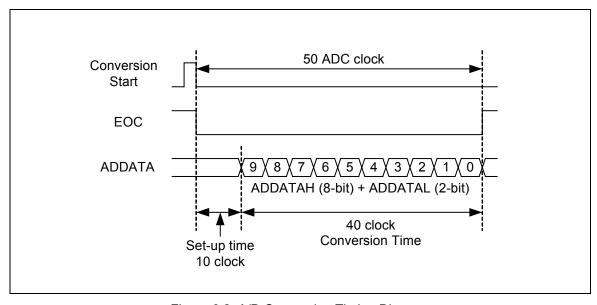
< Figure 5-2 Extended Output >

6. Analog to Digital Converter

The 10-bit CMOS ADC (Analog to Digital Converter) consists of a 10-channel analog input multiplexer, control register, clock generator, 10 bit successive approximation register, and output register.


A/D CONVERSION PROCEDURE

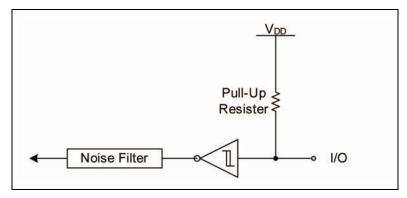
- 1. Configure the analog input pins to ADC input mode by making the appropriate settings in the I/O port control registers.
- 2. Select ADC input channel.
- 3. Start conversion by set the ADCCON.0 to '1'.
- 4. When conversion has been completed, the EOC flag is set to '1'.
- 5. The converted digital value is loaded to the ADCDATL, ADCDATH register, and then the ADC module enters an idle state.
- 6. The digital conversion result can now be read from the ADDATAH, ADDATAL register.


If the chip enters to STOP mode in conversion process, there will be a leakage current path in A/D block. The ADC operation must be finished before the chip enters STOP mode.

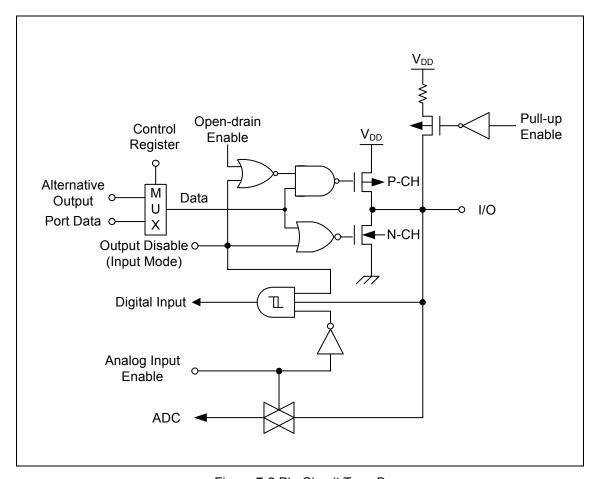
There is not sampling/hold circuit in ADC. Therefore, it is important that any fluctuations in the analog level at the ADC0–ADC9 input pins during a conversion procedure be kept to an absolute minimum. Any change in the input level, perhaps due to circuit noise, will invalidate the result.

```
MOVLW
               00000100b
                            ; f_{OSC}/4, ADC0
      MOVWF
               ADCCON
                            ; Configure ADCCON
               PACONL
      CLRF
      BSF
               PACONL, 0
      BSF
               PACONL, 1
                           ; Configure PA.0 ADC Input 0
               ADCCON, 0
      BSF
                            ; Start Conversion
ADC LOOP:
               ADCCON, 3
      BTFSS
               ADC_LOOP
                            ; Wait until EOC bit is set
      GOTO
                            ; Converted value can be read from ADDATL and
                            ; ADDATH.
```

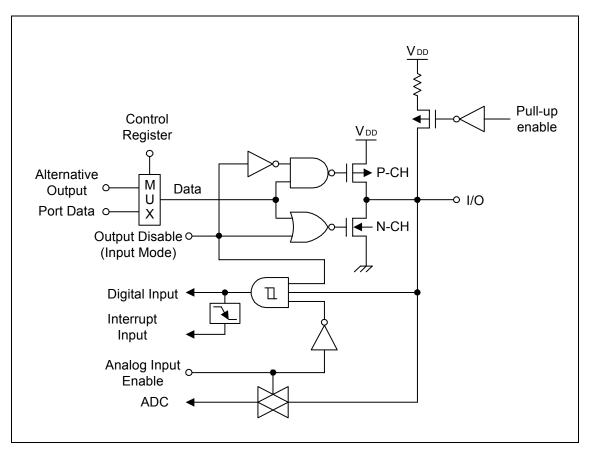

< Figure 6-1 Analog to Digital Converter Block Diagram >

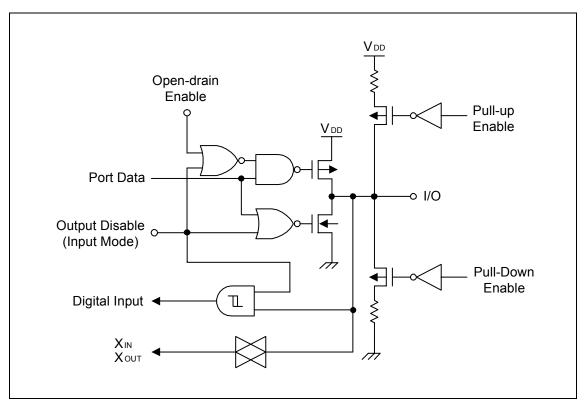

7. I/O Ports

The TM59PA20 has three I/O port, PORTA, PORTB and PORTC (MAX 18 Pin). These ports can be accessed directly by writing or reading port data register.


PORT	Bit	Pin No	Pin Description	Input/ Output	PIN Type
	0	19	Schmitt trigger input, Push-pull output, ADC0, External Interrupt 0	I/O	
	1	18	Schmitt trigger input, Push-pull output, ADC1, External Interrupt 1	I/O	
	2	17	Schmitt trigger input, Push-pull output, ADC2	I/O	
PORT A	3	16	Schmitt trigger input, Push-pull output, ADC3	I/O	С
	4	15	Schmitt trigger input, Push-pull output, ADC4	I/O	
	5	14	Schmitt trigger input, Push-pull output, ADC5	I/O	
	6	13	Schmitt trigger input, Push-pull output, ADC6, PWM0	I/O	
	7	12	Schmitt trigger input, Push-pull output, ADC7, PWM1	I/O	
	0	2	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	D
PORT B	1	3	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	D
	2	4	·		Α
	0	5	Schmitt-trigger input, Push-pull output, Open-drain Output, Timer0 match Output	I/O	С
	1	6	Schmitt-trigger input, Push-pull output, Open-drain Output, Buzzer Out	I/O	
	2	7	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	Б
PORT C	3	8	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	В
	4	9	Schmitt-trigger input, Push-pull output, Open-drain Output	I/O	
	5	10	Schmitt-trigger input, Push-pull output, Open-drain Output, ADC9	I/O	
	6	11	Schmitt-trigger input, Push-pull output, Open-drain Output, ADC8, Clock Out	I/O	С

< Table 7-1 Port Configuration Overview >


Pin Circuit


< Figure 7-1 Pin Circuit Type A >

< Figure 7-2 Pin Circuit Type B >

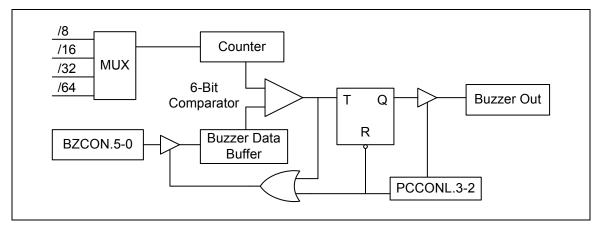
< Figure 7-3 Pin Circuit Type C >

< Figure 7-4 Pin Circuit Type D >

PORTA

Port A has 8-bit I/O Pins. It can be used for normal I/O (Schmitt trigger input, push-pull output, open-drain output) or some alternative function (ADC, External interrupt 0, 1, PWM output).

PORTB


Port B has 3-bit I/O Pins. PortB.1-0 can be used clock input or normal I/O. If the PortB.1-0 pins are used as external clock Input, the control register (PBCON) must be set to output port to prevent current consumption. PortB.2 can be used for input only pin.

PORTC

Port C has 7-bit I/O Pins. It can be used for normal I/O (Schmitt trigger input, push-pull output, open-drain output) or some alternative function (ADC, Clock output, T0 clock output, Buzzer out).

8. Buzzer Out

The TM59PA20 has Buzzer driver that consist of 6-bit counter, clock divider, control register. It generates 50% duty square-wave and the frequency cover a wide range.

< Figure 8-1 Block Diagram >

It can be enabled by setting the bit PC.1 as Buzzer out function. When the Buzzer Out is enabled, the 6-bit counter is cleared and PC.1 output status is '0' and start counting up. If the counter value is match up to period data (BZCON.5-0), then PC.1 output status is toggle and the counter is cleared. Also, the counter is cleared by 6-bit counter overflow. BZCON.5-0 determines output frequency. Frequency calculation is as follows.

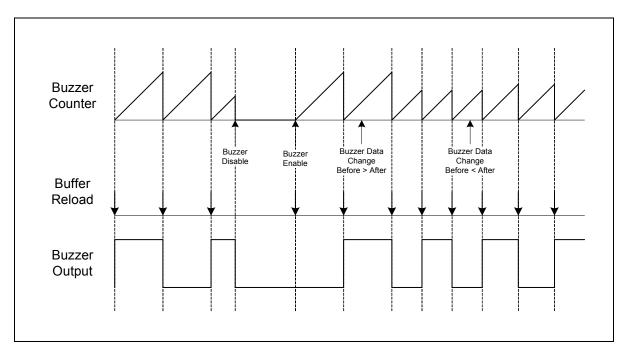
```
F_{BZ} = f_{OSC}/2/Prescaler Ratio/(Period Data + 1)
```

```
Example 8-1> Output frequency calculation
```

CPU Clock (fosc): 8.192MHz

Prescaler Ratio (BZCON.7-6): 11 (f_{OSC} /64),

Period Data (BZCON.5-0): 9


 F_{BZ} 8.192M / 2 / 64 / (9+1) = 6400 (Hz)

Example 8-2> Sample Code

Preliminary

```
CLRF PCCONL ; Clear PCCONL
MOVLW 11001001b ; fosc/64, Period Data 9 ( 6.4 KHz Output )
MOVWF BZCON ; Set Buzzer 6.4KHz Output
BSF PCCONL, 2 ; Set PORTC.1 Buzzer Out. Buzzer Enable
.
.
.
BCF PCCONL, 2 ; Set PORTC.1 Input mode. Buzzer Disable
```

51

< Figure 8-2 Timing Diagram >

9. Electrical Characteristics

9.1 Absolute Maximum Ratings ($T_A = 25^{\circ}C$)

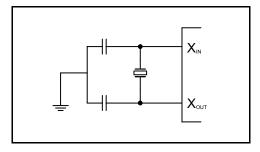
Parameter	Rating	Unit
Supply voltage	-0.3 to $+6.5$	
Input voltage	-0.3 to $V_{DD} + 0.3$	V
Output voltage	-0.3 to $V_{DD} + 0.3$	
Output current high per 1 PIN	– 25	
Output current high per all PIN	- 80	mA
Output current low per 1 PIN	+ 30	IIIA
Output current low per all PIN	+ 150	
Maximum Operating Voltage	5.5	V
Operating temperature	-40 to +85	°C
Storage temperature	- 65 to + 150	C

9.2 DC Characteristics ($T_A = -40^{\circ}$ C to + 85°C, $V_{DD} = 2.0$ V to 5.5V)

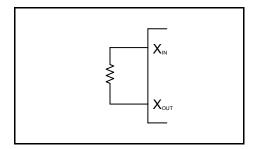
Parameter	Symbol	Cond	itions	Min	Тур	Max	Unit
Input High Voltage	V _{IH1}	Except X _{IN} , X _{OUT}	V _{DD} = 2.0 to 5.5V	$0.8 V_{DD} V_{DD} - 0.1$	_	V_{DD}	٧
Input Low Voltage	V _{IL1}	Except X_{IN} , X_{OUT} X_{IN} and X_{OUT}	V _{DD} = 2.0 to 5.5V	_	_	0.2 V _{DD} 0.1	V
Output High Voltage ^(NOTE 1)	V _{OH}	PORT A,B,C	V _{DD} = 4.5 to 5.5V	V _{DD} -1.5	V _{DD} - 0.4	-	V
Output Low Voltage ^(NOTE 2)	V _{OL}	PORT A,B,C	$V_{DD} = 4.5 \text{ to } 5.5 \text{V}$	_	0.4	2.0	V
Input Leakage Current(pin high)	I _{ILH}	Except X_{IN} , X_{OUT} X_{IN} and X_{OUT}	$V_{IN} = V_{DD}$ $V_{IN} = V_{DD}$	_	_	1 20	uA
Input Leakage Current(pin low)	I _{ILL}	Except X_{IN} , X_{OUT} X_{IN} and X_{OUT}	$V_{IN} = 0V$ $V_{IN} = 0V$	_	-	–1 –20	uA
Output Leakage Current(pin high)	I _{OLH}	All output pins	$V_{OUT} = V_{DD}$	_	_	2	uA
Output Leakage Current(pin low)	I _{OLL}	All output pins	V _{OUT} = 0V	_	-	-2	uA
		Run 10MHz Run 4MHz	$V_{DD} = 4.5 \text{ to } 5.5 \text{V}$ $V_{DD} = 2.0 \text{V}$	_	7 2	12 4	mA
Power Supply Current	I _{DD}	Stop mode	V _{DD} = 4.5 to 5.5V	_	100	200	uA
		Otop mode	V _{DD} = 2.6V		30	60	uA
Pull-Up Resistor	R _P	V _{IN} = 0V Ports A, B, C	V _{DD} = 5V	25	50	100	kΩ
Pull-Down Resistor	R _P	V _{IN} = 0V Ports B	V _{DD} = 5V	25	50	100	1/22

NOTE:

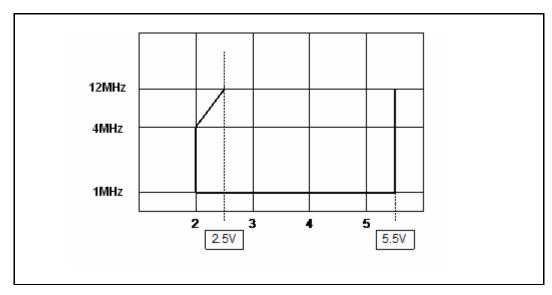
- 1. Output current high = -10mA
- 2. Output current Low = 25mA

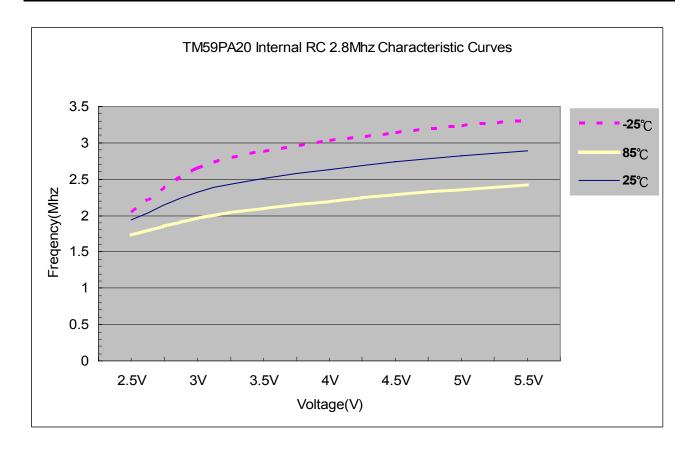

9.3 Clock Timing Constants ($T_A = -40^{\circ}C$ to + $85^{\circ}C$)

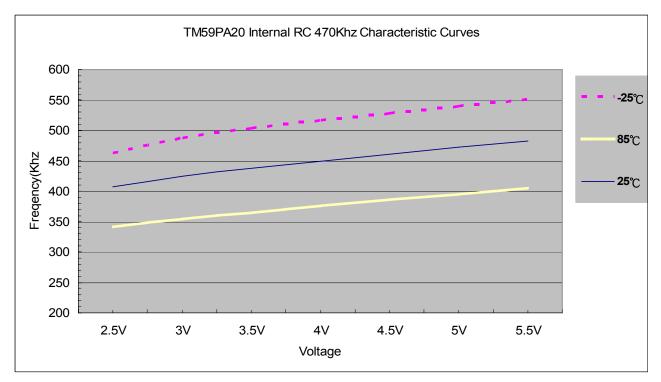
Oscillator	Condition	Min	Тур	Max	Unit
External Clock	$V_{DD} = 2.5 \text{ to } 5.5V$	1	_	12	
External Clock	$V_{DD} = 2.0 \text{ to } 5.5V$	1	_	4	
External RC ^(NOTE 1)	$V_{DD} = 4.75$ to 5.25V		4		MHz
Internal RC ^(NOTE 2)	V _{DD} = 4.75 to 5.25V	_	2.8	_	
internal NC	V _{DD} = 4.73 to 3.23V		0.47		

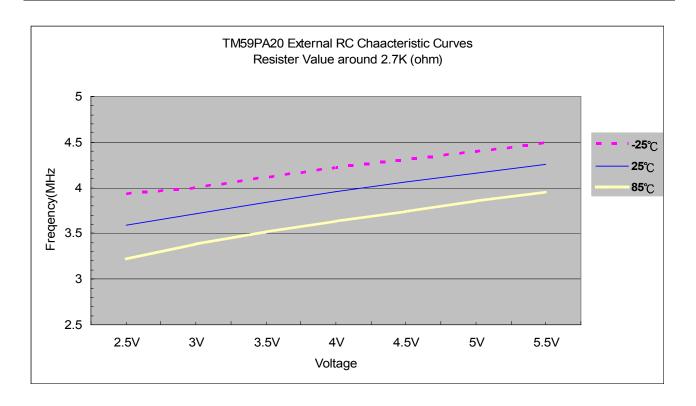

NOTE:

1. Tolerance: ± 10 % at $T_A = 25$ °C, Resister Voltage around 2.7K (ohm).

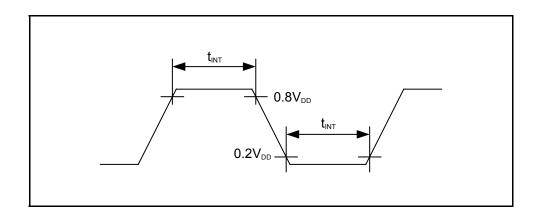

2. Tolerance: ± 20 % at $T_A = 25$ °C


External Oscillator Circuit (Crystal or Ceramic)




External R-C Oscillator

System Operating Frequency Range



9.4 External Interrupt Characteristics ($T_A = -40^{\circ}C$ to + 85°C, $V_{DD} = 2.0V$ to 5.5V)

Parameter	Conditions	Min	Тур	Max	Unit
Input High Voltage	_	$0.8 V_{DD}$	_	V_{DD}	V
Input Low Voltage	_	_	_	$0.2 V_{DD}$	V
External Interrupt Input Width(t _{INT})	V _{DD} = 5V ± 10 %	_	200	-	ns

9.5 A/D Converter Electrical Characteristics ($T_A = -40^{\circ}$ C to + 85°C, $V_{DD} = 2.0$ V to 5.5V, $V_{SS} = 0$ V)

Parameter	Conditions	Min	Тур	Max	Unit s
Total Accuracy		_	_	± 3	
Integral Non-Linearity	\/ = 5 12\/ \/ = 0\/	_	_	± 2]
Differential Non-Linearity	V_{DD} = 5.12V, V_{SS} = 0V CPU clock = 10MHz	_	_	± 1	LSB
Offset Error of Top	Of O Clock - Tolvil 12	_	± 1	± 1 ± 3	
Offset Error of Bottom		_	± 1	± 2]
Max Input Clock (f _{ADC})	_	_	_	4	MHz
Conversion Time (NOTE 1)	$f_{ADC} = 4MHz$	_	20	_	μS
Analog Input Voltage	-	V_{SS}	-	V_{DD}	V
Analog Input Impedance	-	2	_	_	МΩ
Analog Input Current	V _{DD} = 5V	_	_	10	μА
Analog Block	$V_{DD} = 5V$	_	1	3	mA
Analog Block Current (NOTE 2)	$V_{DD} = 3V$	_	0.5	1.5	mA
Guilent	V_{DD} = 5V stop mode	_	100	500	nA

NOTE:

- "Conversion time" is the time required from the moment a conversion operation starts until it ends.
- **2.** I_{ADC} is operating current during A/D conversion.

9.6 Reset Timing Characteristics ($T_A = -40$ °C to + 85°C, $V_{DD} = 2.0V$ to 5.5V)

Parameter	Conditions	Min	Тур	Max	Unit
Input High Voltage	_	$0.8 V_{DD}$	-	V_{DD}	V
Input Low Voltage	1	_	-	$0.2V_{DD}$	V
RESET Input Low Width	Input V_{DD} = 5V \pm 10 %	_	1	_	μS
Oscillation stabilization time	f _{OSC} = 1 ~ 12MHz	2.4	_	6.1	ms

9.7 LVR Circuit Characteristics ($T_A = -40^{\circ}C$ to + 85°C, $V_{DD} = 2.0V$ to 5.5V)

Parameter	Symbol	Min	Тур	Max	Unit
LVR reference Voltage	V_{LVR}	-	2.0 2.3 3.0 3.9	-	V
LVR Hysteresis Voltage	V_{HYST}	_	±0.3	_	V
Low Voltage Detection time	t_LVR	1	-	_	μS

10. Packaging Information

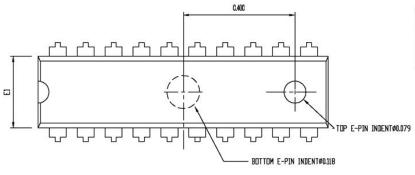
The TM59PA20 order information: "IC Type" "XX" "YY" "C" "Z".

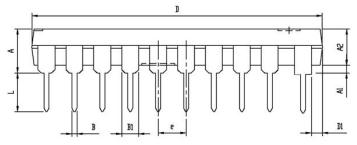
"IC TYPE": TM59PA20

"XX": Package Type

Code: D (1). DIP Code: S (2). SOP

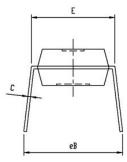
"YY": IC Pin Number

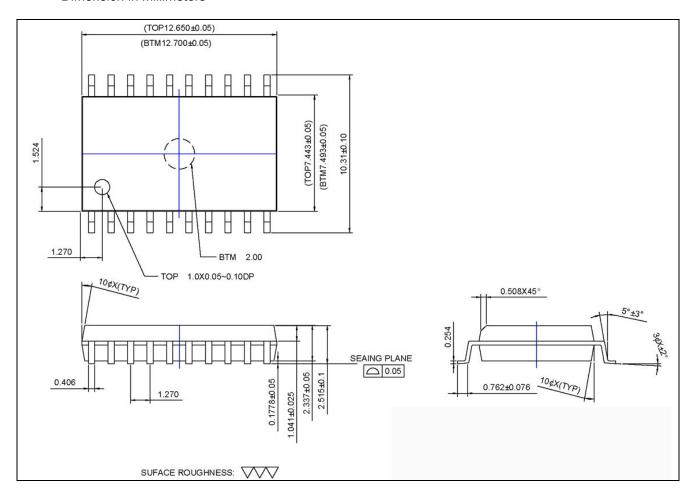

Code: 16 (1). Pin Number: 16 (2). Pin Number: 20 Code: 20


"C": Reserve (Must write be "C")

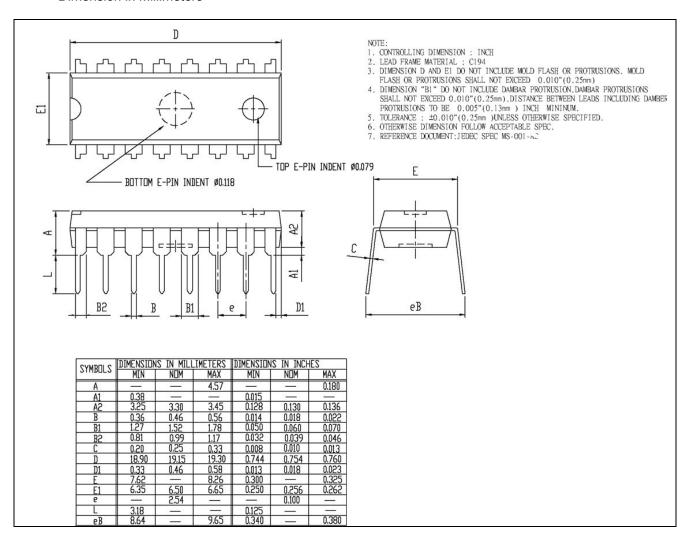
"Z": Package material

(1). Package material: Pb-free Code: W (2). Package material: Green Package Code: G

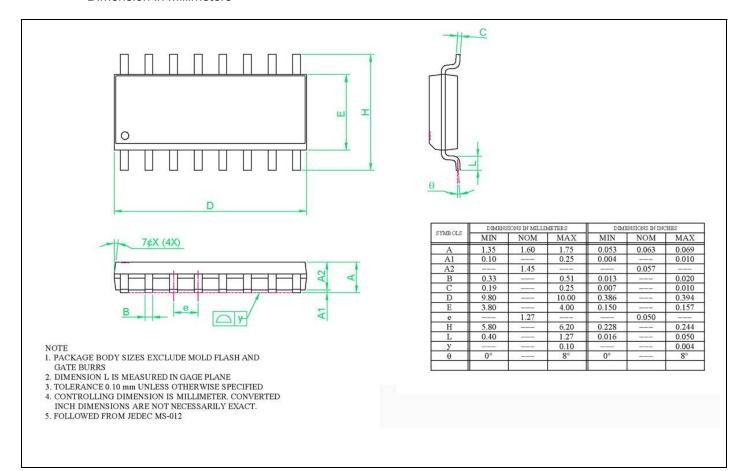

10.1 20-DIP Package Dimension 20 lead, Dual In-line Package **Dimension in Millimeters**


SYMBOLS	DIMENSIO	ins in Mil	LIMETERS	DIMENSIC	ins in inc	HES
STRIBULS	MIN	NDM	MAX	MIN	NDM	MAX
Α		10.00	4.57	_		0.180
A1	0.38			0.015	_	Ī
A2		3.30	3.56	_	0.130	0.140
В	0.36	0.46	0.56	0.014	0.018	0.022
B1	1.27	1.52	1.78	0.050	0.060	0.070
С	0.20	0.25	0.33	0.008	0.010	0.013
D	26.32	26.416	26.52	1.036	1,040	1.044
D1	0.43	0.56	0.69	0.017	0.022	0.027
Ε	7.62		8.26	0.300		0.325
E1	6.40	6.50	6.65	0.252	0.256	0.262
6		2.54		_	0.100	
L	3.18		_	0.125	_	
eВ	8.38		9.65	0.330		0.380

- NOTE:
 1. CONTROLLING DIMENSION :INCH
 2. LEAD FRAME MATERIAL : A194
 3. PACKAGE DIMENSION EXCLUDE MOLD FLASH OR PROTRUSION.
 4. ALLOWABLE MOLD FLASH OR PROTRUSION SHALL NOT EXCEED 0.010"
 5. TOLERANCE : 0.010"UNLESS OTHERWISE SPECIFIED.
 6. AFTER SOLDER DIPPING LEAD THICKNESS WILL BE 0.020"MAX.



58


10.2 20-SOP Package Dimension 20 lead, Small Outline Package Dimension in Millimeters

10.3 16-DIP Package Dimension16 lead, Dual In-line PackageDimension in Millimeters

10.4 16-SOP Package Dimension 16 lead, Small Outline Package Dimension in Millimeters

