
HT-IDE3000 User�s Guide

September 2005

Copyright � 2005 by HOLTEK SEMICONDUCTOR INC. All rights reserved. Printed in Taiwan. No part of

this publication may be reproduced, stored in a retrieval system, or transmitted in any form by any means,

electronic, mechanical photocopying, recording, or otherwise without the prior written permission of

HOLTEK SEMICONDUCTOR INC.

NOTICE

The information appearing in this User�s Guide is believed to be accurate at the time of publication. How-

ever, Holtek assumes no responsibility arising from the use of the specifications described. The applica-

tions mentioned herein are used solely for the purpose of illustration and Holtek makes no warranty or

representation that such applications will be suitable without further modification, nor recommends the

use of its products for application that may present a risk to human life due to malfunction or otherwise.

Holtek�s products are not authorized for use as critical components in life support devices or systems.

Holtek reserves the right to alter its products without prior notification. For the most up-to-date informa-

tion, please visit our web site at http://www.holtek.com.tw.

Contents

Part I Integrated Development Environment1

Chapter 1 Overview and Installation ..3

HT-IDE Development Environment..3

Holtek In-Circuit Emulator � HT-ICE..4

HT-ICE Interface Card...4

OTP Programmer..5

OTPAdapter Card ...5

System Configuration ..5

Installation..6

System Requirement...6

Hardware Installation ..6

Software Installation..6

Chapter 2 Quick Start ..11

Step 1 � Create a New Project ..11

Step 2 � Add Source Program Files to the Project..11

Step 3 � Build the Project ..11

Step 4 � Programming the OTP Device ..11

Step 5 � Transmit Code to Holtek ...12

Chapter 3 Menu � File/Edit/View/Tools/Options ..13

Start the HT-IDE3000 System ...13

File Menu...15

Edit Menu...16

View Menu ...16

Contents

i

Tools Menu ..17

Configuration Option ...17

Diagnose ...18

Writer...19

Library Manager ..19

Voice/VROM Editor ...20

Voice/Download ..20

LCD Simulator...20

Virtual Peripheral Manager..21

Data EEPROM Editor..21

Options Menu ..21

Project Command ...21

Debug Command ..23

Directories Command ...24

Editor Command ...24

Color Command ..25

Font Command ...25

Chapter 4 Menu � Project..27

Create a New Project...27

Open and Close a Project..28

Manage the Source Files of a Project..28

To Add a Source File to the Project...29

To Delete a Source File from the Project ..29

To Move a Source File Up or Down ..29

Build a Project�s Task Files..30

To Build a Project Task File ...30

To Rebuild a Project Task File...31

Assemble/Compile...31

To Assemble or Compile a Program ...31

Print Option Table Command ..31

Generate Demo File (.DMO) Command..31

Chapter 5 Menu � Debug...33

Reset the HT-IDE3000 System..34

To Reset from the HT-IDE3000 Commands..35

To Reset from the Target Board ..35

Emulation of Application Programs..35

To Emulate the Application Program...36

To Stop Emulating the Application Program..36

To Run the Application Program to a Line...36

To Directly Jump to a Line of an Application Program ..36

Single Step ..36

Breakpoints..37

Breakpoint Features ...38

Description of Breakpoint Items ..38

How to Set Breakpoints...40

ii

HT-IDE3000 User�s Guide

Trace the Application Program ..41

Initiating the Trace Mechanism ...41

Stopping the Trace Mechanism...43

Trace Start/Stop Setup..43

Trace Record Format ..45

Debugger Command Mode ...47

Enter/Quit the Command Mode ..47

Functions Supported by the Command Mode...47

Log File Format ...53

HT-COMMAND Error Messages ...54

Chapter 6 Menu � Window ..55

Window Menu Commands...56

Chapter 7 Simulation ...61

Start the Simulation ...61

Chapter 8 OTP Programming..63

Introduction..63

Installation..64

Adapter Card ...64

Programming an OTP Device with the HT-HandyWriter..65

System Messages ...72

Part II Development Language and Tools...........................75

Chapter 9 Assembly Language and Cross Assembler77

Notational Conventions..77

Statement Syntax ..78

Name...78

Operation ..78

Operand ..78

Comment...79

Assembly Directives ..79

Conditional Assembly Directives...79

File Control Directives ...80

Program Directives..81

Data Definition Directives..84

Macro Directives ...86

Assembly Instructions..88

Name...89

Mnemonic..89

Operand, Operator and Expression ..89

Contents

iii

Miscellaneous..91

Forward References..91

Local Labels ..91

Reserved Assembly Language Words..92

Cross Assembler Options ..93

Assembly Listing File Format...93

Source Program Listing...93

Summary of Assembly ..94

Miscellaneous ...94

Chapter 10 Holtek C Language...97

Introduction..97

C Program Structure..98

Statements ..98

Comments...98

Identifiers ...99

Reserved Words..99

Data Types...99

Data Types and Sizes ...99

Declaration ..100

Constants...101

Integer Constants..101

Character Constants ...101

String Constants..101

Enumeration Constants...102

Operators...102

Arithmetic Operators ...102

Relational Operators ...102

Equality Operators ..103

Logical Operators..103

Bitwise Operators..103

Assignment Operators ..103

Increment and Decrement Operators..104

Conditional Operators ...104

Comma Operator ..104

Precedence and Associativity of Operators ..104

Type Conversions ...105

Program Control Flow..106

Functions ...109

Classic Form ...109

Modern Form...109

Pointers and Arrays ...110

Pointers ...110

Arrays ..111

Structures and Unions..111

Preprocessor Directives...112

iv

HT-IDE3000 User�s Guide

Holtek C Language Extensions and Restrictions...116

Keywords...116

Memory Bank ..116

Bit Data Type...117

In Line Assembly ...117

Interrupt ...117

Variables..118

Static Variables..119

Constants ..119

Functions...119

Arrays ..119

Constant Variables ..119

Pointer...120

Initial Value..120

Multiply/Divide/Modulus ..120

Built-in Functions...120

Stack ...122

Chapter 11 Mixed Language ...123

Little Endian...123

Naming rule of Functions and Parameters ..124

Global Variable ..124

Local Variable..124

Function ..125

Function Parameters...125

Parameter Passing ..126

Return Value ..126

Preserving Registers ...126

Calling Assembly Function from C Program..126

Calling a C Function from an Assembly Program..127

Programming the ISR with Assembly Language ...130

Chapter 12 Cross Linker ...131

What the Cross Linker Does..131

Cross Linker Options ...131

Libraries ..131

Section Address ..131

Generate Map File ..132

Map File ...132

Cross Linker Task File and Debug File ..132

Contents

v

Part III Utilities ...133

Chapter 13 Library Manager ...135

What the Library Manager Does..135

To Setup the Library Files ..135

Create a New Library File ...136

Add a Program Module into a Library File...137

Delete a Program Module from a Library File ...137

Extract a Program Module from Library and Create An Object File137

Object Module Information ..137

Chapter 14 LCD Simulator ..139

Introduction..139

LCD Panel Configuration File ..139

Relationship Between the Panel File and the Current Project140

Selecting the HT-LCDS ...140

LCD Panel Picture File ..141

Setup the LCD Panel Configuration File..141

Setup the Panel Configurations ..141

Select the Patterns and Their Positions ..142

Add a New Pattern ..142

Delete a Pattern ..143

Change the Pattern ...143

Change the Pattern Position ...143

How to Add a User-define Matrix ..144

Define the Pattern Using the Panel Editor ..144

Add New Pattern Items Using a Batch File ...145

Selecting Color for an LCD Panel ...145

Setting Pattern Color for VFD Panel ...146

Simulating the LCD..146

Stop the Simulation ...146

Chapter 15 Virtual Peripheral Manager..147

Introduction..147

The VPM Window..147

VPMMenu..148

File Menu ..148

Function Menu ..149

The VPM Peripherals...151

LED ...151

Button/Switch ..152

Seven Segment Display..152

Quick Start Example ..154

Scanning Light ..154

vi

HT-IDE3000 User�s Guide

Part IV Appendix ...157

Appendix A Reserved Words Used By Cross Assembler..........................159

Reserved Assembly Language Words ..159

Instruction Sets ..160

Appendix B Cross Assembler Error Messages ..165

Appendix C Cross Linker Error Messages ..169

Appendix D Cross Library Error Messages...175

Appendix E Holtek Cross C Compiler Error Messages..............................177

Error Code ...177

Warning Code..180

Fatal Code ...182

Contents

vii

viii

HT-IDE3000 User�s Guide

P a r t I

Integrated Development

Environment

Part I Integrated Development Environment

1

2

HT-IDE3000 User�s Guide

C h a p t e r 1

Overview and Installation

To ease the process of application development, the importance and availability of supporting

tools for microcontrollers cannot be underestimated. To support its range of MCUs, Holtek is fully

committed to the development and release of easy to use and fully functional tools for its full range

of devices. The overall development environment is known as the HT-IDE, while the operating soft-

ware is known as the HT-IDE3000. The software provides an extremely user friendly Windows

based approach for program editing and debugging while the HT-ICE emulator hardware provides

full real time emulation with multi functional trace, stepping and breakpoint functions. With a com-

plete set of interface cards for its full device range and regular software Service Pack updates, the

HT-IDE development environment ensures that designers have the best tools to maximize effi-

ciency in the design and release of their microcontroller applications.

HT-IDE Development Environment

The Holtek Integrated Development Environment, otherwise known as the HT-IDE, is a high per-

formance integrated development environment designed around Holtek�s series of 8-bit MCU de-

vices. Incorporated within the system is the hardware and software tools necessary for rapid and

easy development of applications based on the Holtek range of 8-bit MCUs. The key component

within the HT-IDE system is the HT-ICE In-Circuit Emulator, capable of emulating the Holtek 8-bit

MCU in real time, in addition to providing powerful debugging and trace features. The latest ver-

sion of the HT-ICE In-Circuit Emulator also incorporates a complete OTP writer which provides the

user with all the tools required to design, debug and program their OTP devices.

As for the software, the HT-IDE3000 provides a friendly workbench to ease the process of applica-

tion program development, by integrating all of the software tools, such as editor, Cross Assem-

bler, Cross Linker, library and symbolic debugger into a user friendly Windows based

environment. In addition, the HT-IDE3000 provides a software simulator which is capable of simu-

lating the behavior of Holtek�s 8-bit MCU range without connection to the HT-ICE. All fundamental

functions of the HT-ICE hardware are valid for the simulator.

More detailed information on the HT-IDE3000 development system is contained within the

HT-IDE3000 User�s Guide. Installed in conjunction with the HT-IDE3000 and to ensure that the de-

velopment system contains information on new microcontrollers and the latest software updates,

Holtek provides regular HT-IDE3000 Service Packs. These Service Packs, which can be down-

loaded from the Holtek website, do not replace the HT-IDE3000 but are installed after the

HT-IDE3000 system software has been installed.

Chapter 1 Overview and Installation

3

1

Some of the special features provided by the HT-IDE3000 include:

� Emulation

� Real-time program instruction emulation

� Hardware

� Easy installation and usage

� Either internal or external oscillator

� Breakpoint mechanism

� Trace functions and trigger qualification supported by trace emulation chip

� Printer port for connecting the HT-ICE to a host computer

� I/O interface card for connecting the user�s application board to the HT-ICE

� OTP writer hardware integrated within the HT-ICE

� Software

� Windows based software utilities

� Source program level debugger (symbolic debugger)

� Workbench for multiple source program files (more than one source program file in one applica-

tion project)

� All tools are included for the development, debug, evaluation and generation of the final applica-

tion program code (mask ROM file and OTP file)

� Library for the setting up of common procedures which can be linked at a later date to other pro-

jects.

� Simulator can simulate and debug programs without connection to the HT-ICE hardware

� Virtual Peripheral Manager (VPM) simulates the behavior of the peripheral devices.

� LCD simulator simulates the behavior of the LCD panel.

Holtek In-Circuit Emulator � HT-ICE

Developed alongside the Holtek 8-bit microcontroller device range, the Holtek ICE is a fully func-

tional in-circuit emulator for Holtek�s 8-bit microcontroller devices. Incorporated within the system

are a comprehensive set of hardware and software tools for rapid and easy development of user

applications. Central to the system is the in-circuit hardware emulator, capable of emulating all of

Holtek�s 8-bit devices in real-time, while also providing a range of powerful debugging and trace fa-

cilities. Regarding software functions, the system incorporates a user-friendly Windows based

workbench which integrates together functions such as program editor, Cross Assembler, Cross

Linker and library manager. In addition, the system is capable of running in software simulation

mode without connection to the HT-ICE hardware.

HT-ICE Interface Card
The interface cards supplied with the HT-ICE can be used for most applications, however, it is pos-

sible for the user to omit the supplied interface card and design their own interface card. By includ-

ing the necessary interface circuitry on their own interface card, the user has a means of directly

connecting their target boards to the CN1 and CN2 connectors of the HT-ICE.

4

HT-IDE3000 User�s Guide

Fig 1-1

OTP Programmer
Holtek�s OTP devices are fully supported by a range of programmers. For engineering level OTP

device programming, Holtek supplies its stand alone programming tool which provides a quick

and efficient means for low volume OTP programming. The HT-ICE In-Circuit Emulators has inte-

grated a writer as part of the hardware package, facilitating complete design, debug and OTP de-

vice programming all within the HT-ICE. More programmers from other suppliers are available

which provide more efficient and higher volume production capability. Refer to our website for fur-

ther suppliers information.

OTP Adapter Card
The Holtek OTP programmers are supplied with a standard Textool chip socket. The OTP Adapter

Card is used to connect the Holtek OTP programmers to the various sizes of available OTP chip

packages that are unable to use this supplied socket.

System Configuration

The HT-IDE system configuration is shown below, in which the host computer is a Pentium compat-

ible machine with Windows 95/98/NT/2000/XP or later. Note that if Windows NT/2000/XP or later

systems are used, then the HT-IDE3000 software must be installed in the Supervisor Privilege

mode.

The HT-IDE system contains the following hardware components:

� The HT-ICE box contains the emulator box with 1 printer port connector for connecting to the

host machine, I/O signal connector and one power-on LED

� I/O interface card for connecting the target board to the HT-ICE box

� Power Adapter, output 16V

� 25-pin D-type printer cable

� Integrated OTP writer

Chapter 1 Overview and Installation

5

� � � � � � � � � 	
 � �

� � � � � � � � �

� � � � � � � � 	 � � � �

� � � � 	 � � � � � � �
� � � � �

 	 � � � �
� � 	 � �

� � � � 	 � � �
� � 	 � � � 	
 � �

� � � � � � 	 � �
� 	 � �

Fig 1-2

� � � � � � � � 	
 � � � � � �

� � � � � � � � � � 	 � � � �

� ! "� ! #

� � � � � � � � � � � � $ � % � � & � � " ' (

Fig 1-3

Installation

System Requirement

The hardware and software requirements for installing HT-IDE3000 system are as follows:

� PC/AT compatible machine with Pentium or higher CPU

� SVGA color monitor

� At least 32M RAM for best performance

� CD ROM drive (for CD installation)

� At least 20M free disk space

� Parallel port to connect PC and HT-ICE

� Windows 95/98/NT/2000/XP

Windows 95/98/NT/2000/XP are trademarks of Microsoft Corporation.

Hardware Installation

� Step 1

Plug the power adapter into the power connector of the HT-ICE

� Step 2

Connect the target board to the HT-ICE by using the I/O interface card or flat cable

� Step 3

Connect the HT-ICE to the host machine using the printer cable

The LED on the HT-ICE should now be lit, if not, there is an error and your dealer should be con-

tacted.

Caution Exercise care when using the power adapter. Do not use a power adapter whose output voltage is

not 16V, otherwise the HT-ICE may be damaged. It is strongly recommended that only the power

adapter supplied by Holtek be used. First plug the power adapter to the power connector of the

HT-ICE.

Software Installation

� Step1

Insert the HT-IDE3000 CD into the CD ROM drive, the following dialog will be shown.

6

HT-IDE3000 User�s Guide

Fig 1-4

Click <HT-IDE3000> button and the following dialog (Fig 1-5) will be shown.

Click <HT-IDE3000> or <Service Pack> as you want.

Here�s an Example of installing HT-IDE3000

Click <HT-IDE3000> button.

� Step 2

Press the <Next> button to continue setup or press <Cancel> button to abort.

Chapter 1 Overview and Installation

7

Fig 1-5

Fig 1-6

� Step 3

The following dialog will be shown to ask the user to enter a directory name.

8

HT-IDE3000 User�s Guide

Fig 1-7

Fig 1-8

� Step 4

Specify the path you want to install the HT-IDE3000 and click <Next> button.

� Step 5

SETUP will copy all files to the specified directory.

Chapter 1 Overview and Installation

9

Fig 1-10

Fig 1-9

� Step 6

If the process is successful a dialog will be shown.

� Step 7

Press the Finish button and restart the computer system. Then you can run HT-IDE3000 now.

SETUP will create four subdirectories, BIN, INCLUDE, LIB, SAMPLE, under the destination di-

rectory you specified in Step 4. The BIN subdirectory contains all the system executables

(EXE), dynamic link libraries (DLL) and configuration files (CFG, FMT) for all supported MCU.

The INCLUDE subdirectory contains all the include files (.H, .INC) provided by Holtek. The LIB

subdirectory contains the library files (.LIB) provided by Holtek. The SAMPLE subdirectory con-

tains some sample programs.

Note that before running the HT-IDE3000 for the first time, the system will ask for company infor-

mation as shown in the figure below. Select appropriate area and fill in the company name and

ID. The HT-IDE3000 provider can be requested to supply an ID number.

10

HT-IDE3000 User�s Guide

Fig 1-12

Fig 1-11

C h a p t e r 2

Quick Start

This chapter gives a brief description of using HT-IDE3000 to develop an application project.

Step 1 � Create a New Project

� Click on Project menu and select New command

� Enter your project name and select an MCU from the combo box

� Click OK button and the system will ask you to setup the configuration options

� Setup all configuration options and click Save button

Step 2 � Add Source Program Files to the Project

� Create your source files by using File/New command

� Write your program and save them with a file name, say TEST.ASM

� Click on Project menu and select Edit command

� An Edit Project dialog will ask you to add/delete files to/from the project

� Select a source file name, say TEST.ASM, and click Add button

� Click OK button after you setup all files in the project

Step 3 � Build the Project

� Click on Project menu and select Build command

� The system will assemble/compile all source files in the project

� If there are some errors in the programs, double click on the error message line and the sys-

tem will prompt you the position where the error happened.

� If all the program files are error free, the system will create a Task file and download to the

HT-ICE for debug.

� You may repeat this step before you finish debugging your programs

Step 4 � Programming the OTP Device

� Build the project for creating the .OTP file

� Click on Tools menu and select the Writer command to program the OTP devices

Chapter 2 Quick Start

11

2

Step 5 � Transmit Code to Holtek

� Click on Project menu and select Print Option Table command

� Send the .COD file and the Option Approval Sheet to Holtek

The Programming and data flow is illustrated by the following diagram:

12

HT-IDE3000 User�s Guide

� � � � � � � �

� � � �

� � �) � � � * *
� % % � �
 � � * � � � � � � �

� � � �

� � � �

� � �) � � � * *
� � � � � *
$ �
 � � � � � � � �
" + � � % % � �
 � � * � � � � � � �
+ � , � � - � �
. + � , � 	 � � �
/ + � � � � � � 0 � � � � 	 � � �

� � � �

 � � � % * *
, �
 � 	 � 1 � 2 	 � 	 � � �

� � � �

, � � - � �
� � � 	 � � � 	 % - � � � � �

� � � �

� � � �

& �
 � � * *
0 �
0 � � � � � � � � % � �
3 � � � � � � � � � � % � �
4 � � � * � 	 � � � 4 � � �
$ � % � �
� � � � � � � � � $ � % � �
$ � % � � � � 	 � �
4 � � � � � � � � * � 5 � � * � � �
4 � � � � � � �

, � 	 � � �
& � � � � � 	 � � � � � � � �

� � � � � 0 � � � � 	 � � �

� � � �

� � � �
 � � � % * *

2 	 % - � � � � � � �

� � � �

� � � �� � � �
 � � � % * *

� � � � � � � � � � � � � 	
 � �
 � � � % * *

� 	 � � 1 � � � � � �

� � � � � �
� � � � � 5 	 � � 4 6 � � �

� � �

� �

� � !

� �
�
 " � � !

Fig 2-1

C h a p t e r 3

Menu �

File/Edit/View/Tools/Options

This chapter describes some of the menus and commands of the HT-IDE3000. Other menus are

described in the Project, Debug and Window chapters.

Start the HT-IDE3000 System

� Click Start Button, select Programs and select Holtek HT-IDE3000

� Click the HT-IDE3000 icon

Chapter 3 Menu �

File/Edit/View/Tools/Options

13

3

Fig 3-1

� If the last project you worked on HT-IDE3000 is in emulation mode (using HT-ICE), then Fig 3-2

will be displayed if one of the following conditions occurs.

� No connection between the HT-ICE and the host machine or connection fails.

� The HT-ICE is powered off.

If �YES� is selected and the connection between the HT-ICE and the host machine has been

made, then Fig 3-3 is displayed, the HT-IDE3000 enters the emulation mode and the HT-ICE be-

gins to function.

� If the last project you work on HT-IDE3000 is in simulation mode (using Simulator), then Fig 3-4

will be displayed to indicate that HT-IDE3000 will enter the simulation mode.

The HT-IDE3000 program supports 9 menus - File, Edit, View, Project, Debug, Tools, Options,

Window and Help. The following sections describe the functions and commands of each menu.

A dockable toolbar, below the menu bar (Fig 3-5), contains icons that correspond to, and assist the

user with more convenient execution of frequently used menu commands. When the cursor is

placed on a toolbar icon, the corresponding command name will be displayed alongside. Clicking

on the icon will cause the command to be executed.

14

HT-IDE3000 User�s Guide

Fig 3-3

Fig 3-2

Fig 3-4

A Status Bar, in the bottom line (Fig 3-5), displays the emulation or simulation present status and

the result status of commands.

In status bar, the field (PC=0001H) displays the Program Counter while in debugging process (De-

bug menu).

The Status Bar contains information that may be useful during program debug. The Program

Counter is used during program execution and indicates the actual present Program Counter

value while the row and column indicators are used to show the present cursor position when us-

ing the program editor.

File Menu

The File menu provides file processing commands, the details behind which are shown in the fol-

lowing list along with the corresponding toolbar icons.

� New

Create a new file

� Open

Open an existing file

� Close

Close the current active file

Chapter 3 Menu �

File/Edit/View/Tools/Options

15

Fig 3-5

� Save

Write the active windows data to the active file

� Save As ...

Write the active windows data to the specified file

� Save All

Write all windows data to the corresponding opened files

� Print

Print active data to the printer

� Print Setup

Setup printer

� Recent Files

List the most recently opened and closed four files

� Exit

Exit from HT-IDE3000 and return to Windows

Edit Menu

� Undo

Cancel the previous editing operation

� Redo

Cancel the previous Undo operation

� Cut

Remove the selected lines from the file and place onto the clipboard

� Copy

Place a copy of the selected lines onto the clipboard

� Paste

Paste the clipboard information to the present insertion point

� Delete

Delete the selected information

� Find

Search the specified word from the editor active buffer

� Replace

Replace the specified source word with the destination word in the editor active buffer

View Menu

The View menu provides the following commands to control the window screen of the

HT-IDE3000. (Refer to Fig 3-6)

� Line

Move the cursor to the specified line (specified by line number) of the active file

16

HT-IDE3000 User�s Guide

� Cycle Count

Count instruction cycles accumulatively. Press the reset button to clear the cycle count. The ra-

dio buttons Hex and Dec are used to change the radix of the count, hexadecimal or decimal. The

maximum cycle count is 65535.

� Toolbar

Display the toolbar information on the window. The toolbar contains some groups of buttons

whose function is the same as that of the command in each corresponding menu item. When the

mouse cursor is placed on a toolbar button, the corresponding function name will be displayed

next to the button. If the mouse is clicked, the command will be executed. Refer to the corre-

sponding chapter for the functionality of each button. The Toggle Breakpoint button will set the

line specified by the cursor as a breakpoint (highlighted). The toggle action of this button will

clear the breakpoint function if previously set.

� Status Bar

Displays the status bar information on the window.

Tools Menu

The Tools menu provides the special commands to facilitate user application debug. These com-

mands are Configuration Option, Diagnose, Writer, Library Manager, Voice tools and LCD Simula-

tor and virtual peripheral manager.

Configuration Option

This command generates an option file used by the Build command in the Project menu. The con-

tents of the option file depend upon the specified MCU. This command allows options to be modi-

fied after creation of the project.

Chapter 3 Menu �

File/Edit/View/Tools/Options

17

Fig 3-7

Fig 3-6

� Choosing the Clock Source

The clock source used by the HT-ICE has to be chosen when setting the MCU options, either

when creating a new project or modifying the options. The HT-ICE provides two clock sources,

namely internal and external. If an external clock source is chosen, the jumper JP1 must be placed

in the correct position.

� For crystal mode, add a crystal to location X1 and short positions 2 and 3 of jumper JP1 on the

I/O interface card.

� For RC mode, adjust the system frequency with VR1 and short positions 1 and 2 of jumper JP1

on the I/O interface card.

� Internal Clock Source

If an internal clock source is used, the system application frequency has to be specified. The

HT-IDE3000 system will calculate a frequency which can be supported by the HT-ICE, one which

will be the most approximate value to the specified system frequency. Whenever the calculated

frequency is not equal to the specified frequency, a warning message and the specified frequency

along with the calculated frequency will be displayed. Confirmation will then be required to confirm

the use of the calculated frequency or to specify another system frequency. Otherwise an external

clock source is the only option. No matter which kind of clock source is chosen, the system fre-

quency must be specified.

Diagnose

This command (Fig 3-8) helps to check whether the HT-ICE is working correctly. There are a total

of 9 items for diagnosis. Multiple items can be selected by clicking the check box and pressing the

Test button, or press the Test All button to diagnose all items. These items are listed below.

� MCU resource option space

Diagnose the MCU options space of the HT-ICE.

� Code space

Diagnose the program code memory of the HT-ICE.

� Trace space

Diagnose the trace buffer memory of the HT-ICE.

� Data space

Diagnose the program Data Memory of the HT-ICE.

� System space

Diagnose the system Data Memory of the HT-ICE.

� I/O EV 0

Diagnose the I/O EV-chip in socket 0 of the HT-ICE.

� I/O EV 1

Diagnose the I/O EV-chip in socket 1 of the HT-ICE.

� I/O EV 2

Diagnose the I/O EV-chip in socket 2 of the HT-ICE.

� I/O EV 3

Diagnose the I/O EV-chip in socket 3 of the HT-ICE.

18

HT-IDE3000 User�s Guide

Writer

The Writer command under the Tools menu controls the OTP/MTP programming functions of the

HT-ICE built-in writer. Within this command, the sub-command Handywriter is used to program all

Holtek�s OTP type MCU and the HT-MTPWriter is to program all Holtek�s MTP type MCU. How-

ever, this command is not applicable for the other external stand-alone writer which is known as

the HT-Writer. Please visit our website for the relevant information.

Library Manager

The Library Manager command, in Fig 3-9, supports the library functions. Program codes used fre-

quently can be compiled into library files and then included in the application program by using the

Project command in the Options menu. (Refer to the Cross Linker options item in Options menu,

Project command). The functions of Library Manager are:

� Create a new library file or modify a library file

� Add/Delete a program module into/from a library file

� Extract a program module from a library file, and create an object file

Chapter 3 Menu �

File/Edit/View/Tools/Options

19

Fig 3-8

Part III gives more details on the library manager.

Voice/VROM Editor

Holtek provides a VROM Editor for the user to arrange the voice code for the specific MCU (eg.

HT86 series)

Voice/Download

This command downloads the contents of a specified voice data file with extension name .VOC to

the HT-ICE for emulation. It also uploads from the HT-ICE VROM saving the data to a specified

.VOC file. Fig 3-10 displays the dialogue box which shows the name of the downloaded voice file

.VOC, which was generated by the VROM Editor. The size box displays the voice ROM size in

bytes for the current project¢s MCU. When uploading, a different file name from the project name

may be specified to save the contents of voice ROM from the HT-ICE. Ensure that the voice ROM

file .VOC has been generated by the VROM Editor before downloading.

LCD Simulator
The LCD simulator HT-LCDS, provides a mechanism to simulate the output of the LCD driver. Ac-

cording to the designed patterns and the control programs, the HT-LCDS displays the patterns on

the screen in real time. Part III gives more details on the LCD simulator.

20

HT-IDE3000 User�s Guide

Fig 3-9

Fig 3-10

Virtual Peripheral Manager

The Virtual Peripheral Manager (VPM) provides a mechanism to simulate the peripheral device. It

must be used while the HT-IDE3000 is in simulation mode.

Data EEPROM Editor

Some Holtek�s MCUs (eg. HT48E series) have internal EEPROM. The Data EEPROM Editor pro-

vides the interface for the user to arrange the data and download/upload the data to/from the

HT-ICE.

Options Menu

The Options menu (Fig 3-12) provides the following commands which can set the working parame-

ters for other menus and commands.

Project Command

The Project command sets the default parameters used by the Build command in the Project

menu. During development, the project options may be changed according to the needs of the ap-

plication. According to the options set, the HT-IDE3000 will generate a proper task file for these op-

tions when the Build command of the Project menu is issued. The dialog box (Fig 3-13) is used for

setting the options of the Project.

Note Before issuing the Build command, ensure that the project options are set correctly.

Chapter 3 Menu �

File/Edit/View/Tools/Options

21

Fig 3-12

Fig 3-11

� Micro Controller

The MCU name of this project. Use a scroll arrow to browse the available MCU names and se-

lect the appropriate one.

� Enter Free Run Mode (Debug Options Disabled) After Build

Check this box so that HT-IDE3000 will enter free run mode after build. All the debug functions

will be disabled while in free run mode.

� Language Tool Option

Holtek permits Third Party to provide C compiler for Holtek�s MCU. Currently, you can select

Hi-Tech language tool as another choice.

� Assembler/Compiler Options

The command line options of the Cross Assembler. Define symbol allows user to define value

for the specified symbol which is used in the assembly program. The syntax is as follows:

symbol1[=value1] [,symbol2 [=value2] [,...]]

For example:

debugflag=1, newver=3

The check box of the Generate listing file is used to check if the source program listing file has

been generated.

22

HT-IDE3000 User�s Guide

Fig 3-13

� Cross Linker Options

To specify the options of the Cross Linker. Libraries are used to specify the library files refered

by Cross Linker. For example:

libfile1, libfile2

Library files can be selected by clicking the Browse button.

Section address is used to set the ROM/RAM addresses of the specified sections, for example:

codesec=100, datasec=40

The check box of the Generate map file is used to check if the map file of Cross Linker is gener-

ated.

Debug Command

This command sets the options used by the Debug menu (Chapter 5 HT-IDE3000 menu - Debug).

The dialog box (Fig 3-14) lists all the debug options with check boxes. By selecting the options and

pressing the OK button, the Debug menu can then obtain these options during the debugging pro-

cess.

Fig 3-14

� Trace Record Fields

This location specifies the information to be displayed when issuing the Trace List command,

contained within the Window menu. For each source file instruction, the information will be dis-

played in the same order as that of the items in the dialog box, from top to the bottom. If no item

has been selected, the next selected item will be moved forward. The default trace list will dis-

play the file name and line number only. The de-assembled instruction is obtained from the ma-

chine code, and the source line is obtained from the source file. The execution data is the read

data if the execution is a read operation only, and it is the written data if the execution is a write

only or read and write operation. The external signal status has no effect if the simulation mode

is selected.

Chapter 3 Menu �

File/Edit/View/Tools/Options

23

� Auto Stepping Command

Selects the automatic call procedure step option, namely Step Into or Step Over. Only one op-

tion can be selected.

� Connection Port

Selects the PC connection port for the HT-ICE. One PC parallel port, LPT1, LPT2 or LPT3 can

be selected for connection to the HT-ICE. The connection port has no effect if the simulation

mode is selected.

� Mode

Selects the HT-IDE3000 working mode as either simulation or emulation mode. If the HT-ICE is

connected to the host machine and powered on, the HT-IDE3000 can be selected to be either in

emulation or simulation mode.

� Detect Stack Overflow

Uncheck this box if you don�t want the system to show a message while detecting stack over-

flow.

Directories Command

The command sets the default search path and directories for saving files. (Fig 3-15)

� Executable files path

The search path referred to by the HT-IDE3000 when the executable files are called.

� Include files path

The search path referred to by the Cross Assembler to search for the included files.

� Library files path

The search path referred to by the Cross Linker to search for the library files.

� Output files path

The directory for saving the output files of the Cross Assembler (.obj, .lst) and Cross Linker (.tsk,

.map, .dbg)

Editor Command

This command sets the editor options such as tab size and Undo command count. The Save Be-

fore Assemble option will save the file before assembly. The Maximum Undo Count is the maxi-

mum allowable counts of consecutive undo operations.

24

HT-IDE3000 User�s Guide

Fig 3-15

Color Command

This command sets the foreground and background colors for the specified line. From the avail-

able options (Fig 3-17), Text Selection is used for the Edit menu, Current line, Breakpoint Line,

Trace Line and Stack Line are for the Debug menu and Error line is for the Assembler output.

Font Command

This command will change the displayed fonts.

Chapter 3 Menu �

File/Edit/View/Tools/Options

25

Fig 3-16

Fig 3-17

26

HT-IDE3000 User�s Guide

C h a p t e r 4

Menu � Project

The HT-IDE3000 provides an example Project, which will assist first time users in quickly familiariz-

ing themselves with project development. It should be noted that from the standpoint of the

HT-IDE3000 system, a working unit is a project with each user application described by a unique

project.

When developing an HT-IDE3000 application for the first time, the development steps, as de-

scribed earlier, are recommended.

Create a New Project

In the Project menu (Fig 4-1), select the New command to create a new project. In this command,

the user needs to key in or select two pieces of information for the new project, namely the Project

Name and the Micro Controller (Fig 4-2). The user may browse all directories and all existing pro-

jects and select one of them (to overwrite the old project) and to choose one of the available MCU.

Note The project name is a file name with the extension .PRJ.

Chapter 4 Menu � Project

27

4

Fig 4-1

Open and Close a Project

The HT-IDE3000 can work with only one project at a time, which is the opening project, at any

time. If a project is to be worked upon, the project should first be opened, by using the Open com-

mand of the Project menu (Fig 4-1). Then, insert the project name directly or browse the directo-

ries and select a project name. Use the Close command to close the project.

Note When opening a project, the current project is closed automatically.

Within the development period, i.e. during editing, setting options and debugging etc., ensure that

the project is in the open state. This is shown by the displaying of the project name of the opening

project on the title of the HT-IDE3000 window. Otherwise, the results are unpredictable.

The HT-IDE3000 will retain the opening project information if the system exits from the

HT-IDE3000 without closing the opening project. This project will be opened automatically the

next time the HT-IDE3000 is run.

Manage the Source Files of a Project

Use the Edit command to add or remove source program files from the opened project. The order,

from top to bottom, of each source file in the list box, is the order of the input files to the Cross

Linker. The Cross Linker processes the input files according to the order of these files in the box.

Two buttons, namely [Move Up] and [Move Down], can be used to adjust the order of a source file

in the project. Fig 4-3 is the dialog box of the Project menu¢s Edit command.

28

HT-IDE3000 User�s Guide

Fig 4-2

To Add a Source File to the Project

� Type the source file name into the text box of the File Name in the Edit dialog box

� Alternatively, choose the source file type and browse the List Files.

� Choose the drive and directory where the source files are located by using the browse Drives

and Directories items

� Choose a source file name from the list box below the File name item

� Double-click the selected file name or choose the Add button to add the source files to the pro-

ject

When the selected source file has been added, this file name is displayed on the list box of the

Files in project.

To Delete a Source File from the Project

� Choose the file to be deleted from the project

� Click the Delete button

Note Deleting the source files from the project does not actually delete the file but refers to the removal

of the file information from the project.

To Move a Source File Up or Down

� Choose the file to be moved in the list box (Files in project), by moving the cursor to this file and

clicking the mouse button

� Click the [Move Up] button or the [Move Down] button

Chapter 4 Menu � Project

29

Fig 4-3

Build a Project�s Task Files

Be sure that the following tasks have been completed before building a new project:

� The project has been opened

� The project options have all been set

� The project source files have been added

� The MCU options have been set (refer to the Tools menu chapter)

There are two commands related to the building of a project file, the Build command and the Re-

build All command.

The Project menu�s Build command performs the following operations:

� Assemble or compile all the source files of the current project, by calling the Cross Assembler or

C compiler depends on the file extension .asm or .C

� Link all the object files generated by the Cross Assembler or C compiler, and generate a task file

and a debugging file.

� Load the task file into the HT-ICE if it is powered-on

� Display the source program of the execution entry point on the active window (the HT-IDE3000

refers to the source files, the task file and the debugging file for emulation)

Note The Build command may or may not execute the above tasks as the execution is dependent on

the creation date/time of all corresponding files.

The rules are:

� If the creation date/time of a source file is later than that of its object file, then the Cross

Assembler or C compiler is called to assemble, compile this source file and to generate a new

object file.

� If one of the task�s object files has a later creation date/time than that of the task file, then the

Cross Linker is called to link all object files of this task and to generate a new task file.

The Build command downloads the task file into the HT-ICE automatically whether there is an ac-

tion or not.

The Rebuild All command carries out the same task as the Build command. The difference is that

the Rebuild All command will execute the task immediately without first checking the creation

date/time of the project files.

The result message of executing a Build or Rebuild All command are displayed on the Output win-

dow. If an error occurs in the processing procedure, the actions following it are skipped, and no

task file is generated, and no download is performed.

To Build a Project Task File

� Click the Open command of the Project menu to open the project

� Click either the Build command of the Project menu or the Build button on the toolbar (Fig 4-1) to

start building a project

30

HT-IDE3000 User�s Guide

To Rebuild a Project Task File

� Click the Open command of the Project menu to open the project

� Click either the Rebuild All command of the Project menu or the Rebuild all button on the toolbar

(Fig 4-1) to start building a project

Once the project task has been built successfully, emulation and debugging of the application pro-

gram can begin (refer to the HT-IDE3000 menu - Debug chapter).

Assemble/Compile

To verify the integrity of application programs, this command can be used to assemble or compile

the source code and display the result message in the Output window.

To Assemble or Compile a Program

� Use the File menu to open the source program file to be assembled or compiled

� Either select the Assemble/Compile command of the Project menu or click the Assemble button

on the toolbar to assemble/compile this program file

If the opened file has an .asm file extension name, the Cross Assembler will execute the assembly

process. If the file has a .C extension then the Holtek C compiler will compile the program.

If no errors are detected, an object file with extension .OBJ is generated and stored in the directory

which is specified in the Output Files Path (refer to Options menu, Directories command). If an er-

ror occurs and a corresponding message displayed on the Output window, one of the following

commands can be used to move the cursor to the error line:

� Double-click the left button of the mouse or

� Select the error message line on the Output window, and press the <Enter> key

Print Option Table Command

This command will print the current active option file to the specified printer. A printer may be se-

lected where the options file is to be printed out. It is recommended to use a different printer port

from the port which is connected to the HT-ICE.

If both the printer and the HT-ICE are using the same printer port, issuing this command will cause

the loss of all debug information and corresponding data. After the printing job has finished, the

user should proceed to the very beginning of the development procedure and use the Build com-

mand of the Project menu if further emulation/debugging of the application program is required.

Generate Demo File (.DMO) Command

This command will generate a file (.dmo) for HT-DEMO. User can carry HT-DEMO with the .dmo

file and demonstrate his project on a PC without the installation of HT-IDE3000.

Chapter 4 Menu � Project

31

32

HT-IDE3000 User�s Guide

C h a p t e r 5

Menu � Debug

In the development process, the repeated modification and testing of source programs is an inevi-

table procedure. The HT-IDE3000 provides many tools not only to facilitate the debugging work,

but also to reduce the development time. Included are functions such as single stepping, symbolic

breakpoints, automatic single stepping, trace trigger conditions, etc.

After the application program has been successfully constructed, (refer to the chapter on Build a

project�s task files) the first execution line of the source program is displayed and highlighted in the

active window (Fig 5-1). The HT-IDE3000 is now ready to accept and execute the debug com-

mands.

Chapter 5 Menu � Debug

33

5

Fig 5-1

Reset the HT-IDE3000 System

There are 4 kinds of reset methods in the HT-IDE3000 system:

� Power-on reset (POR) by plugging in the power adapter or pressing the reset button on the

HT-ICE

� Reset from the target board

� Software reset command in the HT-IDE3000 Debug menu (Fig 5-2)

� Software power-on reset command in the HT-IDE3000 Debug menu (Fig 5-2)

34

HT-IDE3000 User�s Guide

Fig 5-2

The effects of the above 4 types of reset are listed in table 5-1.

Reset Item
Power-On

Reset

Target

Board

Reset

Software

Reset

Command

Software

Power-On

Reset Command

Clear Registers (*) (*) (*) (*)

Clear Options Yes No No No

Clear PDF, TO Yes No No Yes

PC Value (**) 0 0 0

Emulation Stop (**) No(***) Yes Yes

Check Stand-Alone Yes No No No

Table 5-1

Note (*) : Refer to the Data Book of the corresponding MCU for the effects of registers

under the different resets.

(**) : The PC value is 0 and the emulation stops.

(***) : If the reset is from the target board, the MCU will start emulating the application

after the reset is completed.

PC - Program Counter

PDF - Power Down Flag

TO - Time-out Flag

To Reset from the HT-IDE3000 Commands

� Either choose the Reset command from Debug menu or click the Reset button on the toolbar to

execute a software reset

� Either choose the Power-on Reset command from the Debug menu or click the Power-on Reset

button to execute a software power on reset

To Reset from the Target Board

The target board circuit can take advantage of the �_RES pin (pin 03-C) on the DIN connector to

design a MCU reset button. The effect of this reset is listed in table 5-1.

Emulation of Application Programs

After the application program has been successfully written and assembled, the Build or Rebuild

command should be executed. If successful, the first executable line of the source program will be

displayed and highlighted on the active window (Fig 5-1). At this point, emulation of the application

program can begin by using the HT-IDE3000 debug commands.

Note During emulation of an application program, the corresponding project has to be open.

Chapter 5 Menu � Debug

35

To Emulate the Application Program

� Choose the Go command from the Debug menu

or press the hot key F5

or press the Go button on the toolbar

Other windows can be activated during emulation. The HT-IDE3000 system will automatically stop

the emulation if a break condition is met. Otherwise, it will continue emulating until the end of the

application program. The Stop button on the toolbar is illuminated with a red color while the

HT-ICE is in emulation. Pressing this button will stop the emulation process.

To Stop Emulating the Application Program

There are three methods to stop the emulation, shown as follows:

� Set the breakpoints before starting the emulation

� Choose the Stop command of the Debug menu or press the hot key Alt+F5

� Press the Stop button on the toolbar

To Run the Application Program to a Line

The emulation may be stopped at a specified line when debugging a program. The following meth-

ods provide this function. All instructions between the current point and the specified line will be ex-

ecuted except the conditional skips. Note however that the program may not stop at the specified

line due to conditional jumps or other situations.

� Move the cursor to the stopped line (or highlight this line)

� Choose the Go to Cursor command of the Debug menu

or press the hot key F7

or press the Go to Cursor button on the toolbar

To Directly Jump to a Line of an Application Program

It is possible to jump directly to a line, if the result of executed instructions between the current

point and the specified line are not important. This command will not change the contents of Data

Memory, registers and status except for the Program Counter. The specified line is the next line to

be executed.

� Move the cursor to the appropriate line or highlight this line

� Choose Jump to Cursor command of the Debug menu

Single Step

The execution results of some instructions in the above section may be viewed and checked. It is

also possible to view the execution results one instruction at a time, i.e., in a step-by-step manner.

The HT-IDE3000 provides two step modes, namely manual mode and automatic mode.

In the manual mode, the HT-IDE3000 executes exactly one step command each time the sin-

gle-step command is executed. In the automatic mode, the HT-IDE3000 executes single step com-

mands continuously until the emulation stop command is issued, using the Stop command of the

Debug menu. In the automatic mode, all user specified breakpoints are discarded and the step

rate can be set from FAST, 0.5, 1, 2, 3, 4 to 5 seconds. There are 3 step commands, namely Step

Into, Step Over and Step Out.

36

HT-IDE3000 User�s Guide

� The Step Into command executes exactly one instruction at a time, however, it will enter the pro-

cedure and stop at the first instruction of the procedure when it encounters a CALL procedure in-

struction.

� The Step Over command executes exactly one instruction at a time, however upon encounter-

ing a CALL procedure, will stop at the next instruction after the CALL instruction instead of enter-

ing the procedure. All instructions of this procedure will have been executed and the register

contents and status may have changed.

� The Step Out command is only used when inside a procedure. It executes all instructions be-

tween the current point and the RET instruction (including RET), and stops at the next instruc-

tion after the CALL instruction.

Note The Step Out command should only be used when the current pointer is within a procedure or oth-

erwise unpredictable results may happen.

The two step commands, Step Into and Step Over, in the automatic mode are set using the Debug

sub-menu of the Options menu

� To start automatic single step mode

Choose the Stepping command from the Debug menu

also choose the stepping speed (the step command is set in the Debug command from the Op-

tions menu)

� To end automatic single step mode

Choose the Stop command from the Debug menu

� To change automatic single step command for the automatic mode

� Choose the Debug command from the Options menu

� Choose the Step Into or the Step Over command in the Stepping command box

� To start Step Into

Choose the Step Into command from the Debug menu

or press the hot key F8

or press the Step Into button on the toolbar

� To start Step Over

Choose the Step Over command of the Debug menu

or press the hot key F10

or press the Step Over button on the toolbar

� To start Step Out

Choose the Step Out command of the Debug menu

or press the hot key Shift+F7

or press the Step Out button on the toolbar

Breakpoints

The HT-IDE3000 provides a powerful breakpoint mechanism which accepts various forms of con-

ditioning including program address, source line number and symbolic breakpoint, etc.

Chapter 5 Menu � Debug

37

Breakpoint Features

The following are the main features of the HT-IDE3000 breakpoint mechanism:

� At most 3 breakpoints with equal priority can take effect at any instant.

� Any breakpoint will be recorded in the breakpoints list box after it is set, however this breakpoint

may not be immediately effective. It can be set to be effective later, as long as it is not deleted,

i.e.still in the breakpoints list box.

� It is acceptable to add at most 20 breakpoints to the list box simultaneously. At least one break-

point should be deleted first, if a 21st breakpoint is to be added.

� Breakpoints of address or data, in binary form with don�t-care bits, are permitted.

� When an instruction is set to be an effective breakpoint, the HT-ICE will stop at this instruction,

but will not execute it, i.e. this instruction will become the next one to be executed. Although an

instruction is an effective breakpoint, the HT-ICE may not stop at this instruction due to execu-

tion flow or conditional skips. If an effective breakpoint is in the Data Space (RAM), the instruc-

tion that matches this conditional breakpoint data will always be executed. The HT-ICE will stop

at the next instruction.

Description of Breakpoint Items

A breakpoint consists of the following descriptive items. It is not necessary to set all items, Fig 5-3:

� Space

The location of the breakpoint, either Program Code space or Data space.

� Location

The actual location of the breakpoint. The next paragraph will give the location format.

� Content

The data content of breakpoint. This item is effective only when the Space is assigned to the

Data space. The Read and Write check box are used for executing conditions of the breakpoint.

� Externals

External signal breakpoint. There are 4 external signals, ET0, ET1, ET2 and ET3 at location JP3

on the I/O interface card.

� Format of Description Items � Location

The allowed formats of Location items are:

� Absolute address (in code space or data space) with 4 format types, namely decimal, hexadeci-

mal (suffix with �H� or �h�), binary and don�t-care bits. For example

20, 14h, 00010100b, 10xx0011

represents decimal 20, hexadecimal 14h, binary 00010100b and don¢t-care bits 4 and 5 respec-

tively.

Note Don�t-care bits must be in binary format.

38

HT-IDE3000 User�s Guide

� Line number with or without source file name, the format is:

[source_file_name!].line_number

where the source_file_name is a name of the optional source file. If there is no file name, the

current active file is assumed. The exclamation point ²!² is necessary only when a source file

name is specified. The dot . must prefix the line number which is decimal.

Example:

C:\HIDE\USER\GE.ASM!.42

sets the breakpoint at the 42nd line of the file GE.ASM in directory \HIDE\USER of drive C.

Example:

.48

sets the breakpoint at the 48th line of the current active file.

� Program symbol with or without the source file name. The format is

[source_file_name!].symbol_name

All are the same as the line number location format except that the line_number is replaced with

symbol_name. The following program symbols are acceptable:

� Label name

� Section name

� Procedure name

� Dynamic data symbols defined in data section

� Format of Description Items � Content and External Signals

The format of the content and external signals have four digital number options, similar to the for-

mat of Location absolute address. These four types of number are decimal, hexadecimal, binary

and don¢t-care bits.

� Format of Breakpoints List Box

The Breakpoints list box contains all the breakpoints that have been added, including effective

breakpoints and non-effective breakpoints. The Add button should be used to add new break-

points to the list box, and the Delete button to remove breakpoints from the list box. The format of

each breakpoint in the list box is as follows:

<status> {<space and read/write>, <location>,
<data content>, <external signal>}

where <status> is effective status. �+� is effective (enabled) and ��� is non-effective (disabled).

<space and read/write> is the space type and operating mode. �C� is the code space, "D/R" is the

data space with read, �D/W� is the data space with write, �D/RW� is the data space with read and

write.

<location>, <data content> and <external signal> have the same data format as the input form re-

spectively.

Chapter 5 Menu � Debug

39

How to Set Breakpoints

There are two methods to set/enable a breakpoint, one is by using the Breakpoint command from

the Debug menu, the other is by using the Toggle Breakpoint button on the toolbar. The rules of the

breakpoint mechanism are as follows:

� If the breakpoint to be set is not in the Breakpoints list box (Fig 5-3), then the descriptive items

must be designated first, then added to the Breakpoints list box.

� As long as the breakpoint exists in the list box, it can be made effective by Enabling the break-

point if it fails to be initially effective.

� Press the OK button for confirmation. Otherwise, all changes here will not be effective.

� When using the Toggle Breakpoint button on the toolbar, the cursor should first be moved to the

breakpoint line, and then the Toggle Breakpoint button pressed. If an effective breakpoint is to

be changed to a non-effective breakpoint, this can be achieved by merely pressing the Toggle

breakpoint button.

� To Add a Breakpoint

� Choose the Breakpoint command from the Debug menu (or press the hot key Ctrl+B)

A breakpoint dialog box is displayed (Fig 5-3)

� Designate the descriptive items of the breakpoint

Set Space, Location items

Set Content item and Read/Write check box if Space is the data space

Set External signals if necessary

� Press the Add button to add this breakpoint to the Breakpoints list box.

� Press the OK button to confirm

Note If the total count of the effective breakpoints is less than 3, the newly added one will take effect au-

tomatically after it has been added.

If the Breakpoints list box is full, with 20 breakpoints, the Add button is disabled and no more

breakpoints can be added.

40

HT-IDE3000 User�s Guide

Fig 5-3

� To Delete a Breakpoint

� Choose the Breakpoint command from the Debug menu or press the hot key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

� Choose or highlight the breakpoint to be deleted from the Breakpoints list box

� Press the Delete button to delete this breakpoint from the Breakpoints list box

� Press the OK button to confirm

� To Delete all Breakpoints

� Choose the Breakpoint command from the Debug menu or press the hot key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

� Choose the Clear All button to delete all breakpoints from the Breakpoints list box

� Press the OK button to confirm

� You can also click the Clear All Breakpoint button on the toolbar to accomplish this task.

� To Enable (Disable) a Breakpoint

� Choose the Breakpoint command from the Debug menu or press the hot key Ctrl+B

A breakpoint dialog box is displayed (Fig 5-3)

� Choose the disabled (enabled) breakpoint from the Breakpoints list box

� Press the Enable (Disable) button, to enable or disable this breakpoint

� Press the OK button to confirm

Trace the Application Program

The HT-IDE3000 provides a powerful trace mechanism which records the execution processes

and all relative information when the HT-IDE3000 is emulating the application program. The trace

mechanism provides qualifiers to filter specified instructions and trigger conditions in order to stop

the trace recording. It also provides a method to record a specified count of the trace records be-

fore or after a trigger point.

Note When the HT-IDE3000 starts emulating (refer to the section on Emulation of the Application Pro-

grams), the trace mechanism will begin to record the executing instructions and relative informa-

tion automatically, but not vice versa.

Initiating the Trace Mechanism

The basic requirement for initializing the trace mechanism is to set the Trace Mode with or without

Qualify. The Trace Mode defines the trace scope of the application program and Qualify defines

the filter conditions of the trace recording.

The available Trace Modes are

� Normal

Sets the trace scope to all application programs and is the default mode.

� Trace Main

Sets the trace scope to all application programs except the interrupt service routine programs.

� Trace INT

Sets the trace scope to all interrupt service routine programs.

Chapter 5 Menu � Debug

41

According to Qualify, the trace mechanism decides which instructions and what corresponding in-

formation should be recorded in the trace buffer during the emulation process. The rule is that an

instruction will be recorded if its information and status satisfy one of the enabled qualifiers. The

format of Qualify is the same as that of the breakpoint. If all program steps are required to be re-

corded, then No Qualify is needed (do not set the Qualify). The default is No Qualify.

In contrast to the Trace Mode and Qualify, which specify the conditions of trace recording, both the

Trigger Mode and Forward Rate specify the conditions to stop the trace recording.

The Trigger Mode specifies the kind of trigger point, and is a standard used to determine the loca-

tion of the stop trace point. The Forward Rate specifies the trace scope between the trigger point

and the stop trace point.

The available Trigger Modes are:

� No Trigger

No stopping of the trace recording condition. This is the default case.

� Trigger at Condition A

The trigger point is at condition A.

� Trigger at Condition B

The trigger point is at condition B.

� Trigger at Condition A or B

The trigger point is at either condition A or condition B.

� Trigger at Condition B after A

The trigger point is at condition B after condition A has occurred.

� Trigger when meeting condition A for k times

The trigger point is when condition A has occurred k times.

� Trigger at Condition B after meeting A for k times

The trigger point is at condition B after condition A has occurred for k times.

Condition A and Condition B specify the trigger conditions. The format of condition A or B is the

same as that of the breakpoint.

The Loop Count specifies the number of occurrences of the specified condition A. It is used only

when the Trigger Mode is from one of the last two modes in the above list.

The Forward Rate specifies the approximate rate of the trace recording information between the

trigger point and stop trace point in the whole trace buffer. The trigger point divides the trace buffer

into two parts, before and after trigger point. The forward rate is used to limit the trace recording

scope after the trigger point. The percentage is adjustable between 0 and 100%.

Note It is not necessary for the trace recording scope to be equal to the forward rate. If a breakpoint is

met before reaching the trace recording scope or a trace stop command (refer to: Stopping the

trace mechanism) is issued, the trace recording will be stopped.

A Qualify list box records and displays all qualifiers used by the Trace Mode. Up to 20 qualifiers

can be added into the list box and and up to 6 qualifiers can be effective. A Qualifier can be dis-

abled or deleted from the list box. The format of each qualifier in the Qualify list box has the same

format as the breakpoint in the Breakpoints list box (refer to the section on Breakpoints, Format of

breakpoints list box)

42

HT-IDE3000 User�s Guide

Stopping the Trace Mechanism

There are 3 methods to stop the trace recording mechanism:

� Set the trigger point (Trigger Mode) and Forward Rate as shown above

� Set breakpoints to stop the the emulation and the trace recording.

� Issue a Trace Stop command from the Debug menu (Fig 5-2) to stop the trace recording.

Fig 5-4 lists all the requirements to use the trace mechanism. This is the result of the Trace com-

mand from the Debug menu.

Trace Start/Stop Setup

� To Set the Trace Mode

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

� Choose a trace mode from the Trace Mode pull-down list box

� Press the OK button

� To Set the Trigger Mode

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

� Choose a trigger mode from the Trigger Mode pull-down list box

� press the OK button

� To Change the Forward Rate

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Use the Forward Rate scroll bar to specify the desired rate

� Press the OK button

Chapter 5 Menu � Debug

43

Fig 5-4

� To Setup the Condition A/Condition B

� Choose the Trace command of the Debug Menu

A Trace dialog box is displayed as Fig 5-4.

� Press Condition A/Condition B radio button

� Press the Set Condition button

A Set Qualify dialog box is displayed as in Fig 5-5.

� Enter the conditional information

� Press the OK button to close the Set Condition dialog box

� Press the OK button to close the Trace dialog box

� To Add a Trace Qualify Condition

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

� Press the Qualify radio button

� Press the Set Qualify button

A Set Qualify dialog box is displayed as in Fig 5-5.

� Enter the qualifier information

� Press the OK button to close the Set Qualify dialog box

� Press the Add button to add the qualifiers into the Qualify list box below

� Press the OK button to close the Trace dialog box

� To Delete a Trace Qualify Condition

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

� Choose the qualify line to be deleted from the Qualify list box

� Press the Delete button

� Press the OK button to confirm

� To Delete All Qualify Conditions

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4.

� Press the Clear All button

� Press the OK button to confirm

Note If there is no qualifier, all instructions are qualified by default.

44

HT-IDE3000 User�s Guide

Fig 5-5

� To Enable (Disable) a Trace Qualify Condition

� Choose the Trace command from the Debug Menu

A Trace dialog box is displayed as in Fig 5-4

� Choose the disabled (enabled) qualifier line to be enabled (disabled) from the Qualify list box

� Press the Enable (disable) button

� Press the OK button to confirm

Note At most, 6 trace qualifications can be enabled at the same time.

Trace Record Format

Once the trace qualify and trigger conditions have been setup, those instructions which satisfy the

qualify conditions will be recorded in the trace buffer. The Trace List command of the Window

menu provides the functions to view and check the trace record information, used for debugging

the program. The trace record fields may not all be displayed on the screen except for the se-

quence number. These fields are dependent upon the settings in the Debug sub-menu from the

Options menu. The text enclosed by the parentheses are the headings shown in the Trace List

command of the Window menu. Fig 5-6 and Fig 5-7 illustrate the contents of the trace list under the

different debug options.

� Sequence number (No)

For any of the trigger modes, the sequence number of a trigger point is +0. The trace records be-

fore and after the trigger point are numbered using negative and positive line numbers respec-

tively. If all the fields of the Trace Record Fields (in the Debug Option of Option menu) are

selected, the result is as shown in Fig 5-7. If No trigger mode is selected or the trigger point has

not yet occurred, the sequence number starts from -00001 and decreases 1 sequentially for the

trace records (Fig 5-6).

� Program count (PC)

The program count of the instruction in this trace record.

� Machine code (CODE)

The machine code of this instruction.

� Disassembled instruction (INSTRUCTION)

The disassembled mnemonic instruction is disassembled using an HT-IDE3000 utility.

Chapter 5 Menu � Debug

45

Fig 5-6

� Execution data (DAT)

The data content to be executed (read/write).

� External signal status (0 1 2 3)

The external signal 0~3 denotes the external signal ET0~ET3 respectively.

� Source file name with a line number (FILE-LINE)

The source file name and the line number of this instruction.

� Source file (SOURCE)

The source line statement (including symbols).

All the above fields are optional except the sequence number which is always displayed.

Note To set the trace record fields use the Debug command of the Options menu.

To view the trace record fields use Trace List command of the Window menu.

� Clear the Trace Buffer

The trace buffer can be cleared by issuing the Reset Trace command. Hereafter, the trace informa-

tion will be saved from the beginning of the trace buffer. Note that both the Reset command and

the Power-On Reset command also clear the trace buffer.

46

HT-IDE3000 User�s Guide

Fig 5-7

Debugger Command Mode

In addition to the windows based debugging mode, the HT-IDE3000 provides an alternative debug-

ging mode, named the Command Mode. Under this mode, the user, in addition to obtaining the

same functions as the menu-driven windows based debugging mode, also has access to addi-

tional debugging functions. These added functions include the ability to save the debugging his-

tory into a log file in order to execute these debugging commands automatically again as well as

the ability to execute the previous debugging command without rewriting the command.

Enter/Quit the Command Mode

� Enter to Command Mode

From the Debug Menu of the HT-IDE3000 select �Command Mode� command. When the com-

mand mode has been entered a new screen will appear where commands can be entered after

the �HT8>� prompt on the second line. (Fig 5-8)

� Command Mode Window

� The Command Mode Title bar shows the name of the present project file.

� Any command can be entered after the �HT8>� prompt on the command line.

� When the command is entered the full command syntax will be displayed on the bottom status

bar.

� After the command has been entered at the �HT8> xxxx� prompt, the next line will display the re-

sult of the command execution. (Fig 5-9)

Another �HT8>� prompt will then be displayed where another command can be entered.

� Quit from the Command Mode

To quit from the Command Mode the normal windows exit method can be used or a Q[uit] com-

mand can be entered at the command prompt.

Functions Supported by the Command Mode

The following table shows the complete list of debugging statements supported by the Command

Mode

Command Function Description Command Syntax

! Execute a previous command !dd

; Comment ;

BP Breakpoint Commands BP {-C|-D|-E|-L} [list|*]. � list=11 12...

BP Breakpoint Set BP S[,RW], Location [,Data] [,Ext Sig]

DB Dump Program Memory DB [bank.address [,range]]

DR Dump Data Memory DR [bank.]address[,range]

FA Fill string
FA {bank.address|symbol} list.

�list=11 12...

FB Fill bytes
FB {bank.address|symbol} list

� list=11 12...

GO Free run or run to the specified address GO [address]

Chapter 5 Menu � Debug

47

Command Function Description Command Syntax

JP Jump to specified address directly JP address

H Help H

HIS History of commands HIS

LF Load and execute a log file LF [-V] [LogFileName]

LP Load project LP ProjectName

Q Quit Q

R Reset R

POR Power on reset POR

S Single Step (Into/Over/Out) S [-I|-V|-O] default option: �-I�

TR Trace list TR [-L] [length]

W Open/Write/Close a Log file W {-S|-C} [LogFileName]

In the debugging command syntax, if large brackets exist, this indicates that a parameter must be

inserted otherwise an error will occur. Parameters are separated by a | symbol.

� Breakpoint Commands

There are two breakpoint commands, their command syntax and function is as follows:

� BP � Breakpoint Clear/Enable/Disable/List

Syntax: BP [-C | -D | -E | -L] [list | *]

Parameter -C is the clear breakpoint parameter. This will delete the indicated breakpoint or clear

all the breakpoints shown in the Breakpoint Box. Within the list there can be from 1~20 numbers

48

HT-IDE3000 User�s Guide

Fig 5-8

which represent the breakpoints already setup. This means that more than one can be selected.

For example, the three numbers 1 3 8 each separated by a space, indicates that the 1st,, 3rd

and 8th, breakpoints will be cleared. This has the same operation as the Delete function within

the Debug/Breakpoint window. The star symbol * means that all the breakpoints already setup

will be cleared. It has the same operation as the Clear All function within the Debug/Breakpoint

window.

Parameter -D will change all the indicated breakpoints to non-active, however the breakpoints

will still remain shown in the Breakpoint Box. This command is the same as the Disable function

within the Debug/Breakpoint window. The star * has the same operation as that described

above.

Parameter -E will change all the indicated breakpoints to active. , This command is the same as

the Enable function within the Debug/Breakpoint window. The star * has the same operation as

that described above.

Parameter -L will display all the presently setup breakpoints in the window, the format is consis-

tent with the contents of the Debug/Breakpoint window, where the first column shows the break-

point number. The user can refer to this breakpoint number to setup the required numbers in the

BP -C, BP -D, BP -E statement.

Note 1. BP-L this parameter does not require list |

2. The HT-IDE3000 can only have a maximum of 3 breakpoints active at the same time.

Chapter 5 Menu � Debug

49

Fig 5-9

PROJECT NAME

COMMAND LINE

COMMAND SYNTAX

If no C, D, E or L parameters are given then the Breakpoint command will be of the following type:

� BP � Breakpoint Set

Syntax: BP S [,RW] ,Location [,Data] [,Ext Sig]

The parameter within the brackets is optional however under certain conditions it must be speci-

fied.

S denotes a Space, where a choice can be made between C or D. The letter C indicates that the

breakpoint is set in Program Code Memory, while D indicates that the breakpoint is set in the

Data Memory (RAM)

If D is chosen to replace S then the read/write option [,RW] must also be specified. The user can

choose from R or W or RW. This is because if the breakpoints are set in the Data Memory then

the choice exists for the breakpoint to be activated on either a read, a write or both a read and

write. If C is chosen to replace S, which indicates program code, then it is not necessary to setup

RW.

The �Location� parameter sets the position of the breakpoint, its format is:

[SourceFileName!].LineNumber or [SourceFileName!].SymbolName

If no SourceFileName is specified then the already opened source file will be taken as the de-

fault.

If D is chosen to replace S then the �Data� parameter must be setup. The breakpoint is setup at

the specified location in the Data Memory and will initiate a break when a read or write with the

specified data occurs.

Ext Sig is a parameter that can be chosen, for its use consult the HT-IDE3000 User�s Guide

� Comment Command

� Syntax: ; comment string

This command is provided to give an explanation to the Log file. Any characters found after the ;

will have no functional effect.

� Dump Command

� Syntax: DB bank.address ,range

DB range

DB

This command will display in the window, the contents of the specified program memory area.

This area is specified by indicating the address, as well as the range and bank. The data is in

hex format. If the address is specified but the bank number is not specified then the bank num-

ber will be taken as that of the current bank. If neither address nor bank number is specified the

bank number will be taken as that of the current bank number and the address will be taken as

that of the present Program Counter. If the range is not specified then the range value will be

taken as 16 words. The range is not allowed to exceed one bank (2000h). An example of this

statement would be 1.0f00 which would indicate that the bank number is 1 and the address

value is 0f00h.

� Syntax: DR bank.address ,range

DR address

This command will display in the window, the contents of the specified area of Data Memory.

This data area is specified by its address, range and bank. The data is displayed in hex format. If

the range is not specified then it will be set to 16 bytes. The range is not allowed to exceed one

bank (100h) and the bank address is expressed in hex format.

50

HT-IDE3000 User�s Guide

� Fill Command

This command changes the contents of the Data Memory

� Syntax: FB {bank.address | symbol}, list

Will write the bytes specified in the list into a Data Memory area at the specified bank number

and at the specified start address or symbol.

Either a bank.address or symbol name can be used. Also the list can be more than one byte,

however at least one blank must be used as a delimiter. All values are specified in hex format.

The list range cannot cross over a bank boundary.

� Syntax: FA {bank.address | symbol}, string

FA has the same function as FB except that the data is supplied in ASCII

the user can chose one of the following symbol formats:

.var

filename!.var

path\filename!.var

Note If path contains spaces then the name must be included in quotation marks otherwise an error

condition will occur.

� Example: FA �d:\tmp\test cmd\test1.asm!.count�, �test1�

� Go/Jump Commands

� Syntax: GO [address]

If an address is specified the program will free run until the specified address is encountered. If

the address is not specified the program will run to the end or until an active breakpoint is en-

countered.

� Syntax: JP address

Will force a direct jump to the specified address. Note that an address must be specified.

� Help Command

� Syntax: H

This command will list in the window all of the debugging commands, their syntax and descrip-

tion.

� History Commands

� Syntax: HIS

This command will display in the window the last 20 commands, not including the HIS com-

mand, that were executed. At the same time the first column will display the command sequence

numbers in succession.

� Syntax: !dd

dd is the displayed command sequence number in the above mentioned HIS command. This

command will execute the previously executed command again. By writing the sequence num-

ber and adding a �!� the same command can be executed again reducing the need to re-input

commands and parameters. If no command sequence number is indicated the last command

will be executed.

� Load Commands

� Syntax: LF [-V] [LogFileName]

This command will load and execute all the Debugging Commands in the Log File, specified by

the LogFileName

Chapter 5 Menu � Debug

51

If no LogFileName is specified, then the same name as the current Project File name will be

taken as the filename.

Parameter -V indicates that the command line and the execution result should be displayed in

the window.

If LF has no -V option, then the result record will be placed in a logfile of the same name with a

.res file extension name.

Log file is created using the W command. The contents can be modified by using the File and

Edit function within the HT-IDE3000.

However these contents must contain the correct Debugging Commands otherwise an error

condition will occur, the execution will stop and return to the prompt sign

Note 1. If spaces are included in the LogFileName then the name must be included within quotation

marks otherwise an error condition will occur.

2. The logfile cannot contain the LF, W or Q commands.

� Quit Command

� Syntax: Q

This command will end the Command Mode and return to the present window.

Note 1. This command has no effect in the Command Log file.

2. After quitting from the command mode all the files opened by �LF� and �W -S� will be closed

and the execution of commands will stop.

� Reset Commands

� Syntax: R

The function of this command is the same as the Debug/Reset command

� Syntax: POR

The function of this command is the same as the Debug/Power-On Reset command

� Step Commands

There are 3 kinds of Single Step commands; which after execution will display the contents of the

PC, STATUS and ACC

� Syntax: S {-I | -O | -V }

Single Step Command.

-I is Step Into, which has the same function as Debug/Step Into

-V is Step Over, which has the same function as Debug/Step Over

-O is Step Out, which has the same function as Debug/Step Out

If no option has been setup the default condition will be �S -V�

� Trace Command

� Syntax: TR [-L] [length]

The trace command will display the contents of the trace buffer in the window. Parameter -L indi-

cates that all records will be displayed, which include Sequence number, Program count, Ma-

chine code, Disassembled instructions, Execution data, External signal, source file name with

line number and source file.

52

HT-IDE3000 User�s Guide

If the -L parameter is not supplied, then the default condition will only display Sequence number,

Program count, Machine code, Disassembled instructions and source file name with line num-

ber. The parameter �length� indicates the length of the displayed trace. The trace display will be-

gin from sequence number 0 and trace back with the specified length. The length can also

specify the length to trace forward. To do this the forward rate must first be setup in the system.

The default length value is 5.

The Trace mode, qualify conditions and forward rate etc. parameters are directly setup within the

HT-IDE3000 window, the command mode does not support these functions.

� Write Command

� Syntax: W [-S | -C] [LogFileName]

This command will write the debugging commands and its corresponding results into the Log

File. The Log File will terminate whenever a W -C or Q command is encountered or if the com-

mand mode is terminated.

-S will create a Log File in which all following commands and results will be written

-C will close the previously created Log File, no further commands will be written into the Log

File

If the indicated Log File is already saved, then the system will require confirmation before over-

writing and continuing with the next step. It is not necessary to add a file extension name.

If the Log File name does not exist, then the file name will take the same name as the project

with an added .CMD file extension name.

Note 1. If spaces are included in the LogFileName then the name must be included within quotation

marks otherwise an error condition will occur.

2. After executing the W -S command the LF or W -S command cannot be executed.

Log File Format

The Log File is a text file that can be modified by any text editor including the editor contained

within the HT-IDE3000. This editor can be accessed by selecting Edit from the main menu. Its for-

mat is that every Debugging command will occupy one line.

command: W -S LogFileName will clear the contents of the Log File, and after write the new com-

mands and results.

If the command string, has been created by the �W -S�command then note that prompt signs will

also be written into the Log File. However, the next time it is read by the debugger command these

previously written prompt signs will be ignored automatically. For the case where the command

strings are generated using an editor, note that it is not necessary to enter any prompt signs into

the Log File.

If the Log File has been created by the �W -S�command then before each command execution re-

sult a �;� will be automatically inserted making the execution result into an annotated note.

In this way when the next upload is executed only the command string will be executed, the result

string will be ignored.

Chapter 5 Menu � Debug

53

HT-COMMAND Error Messages

Error Message Description

Invalid Command The command just entered is illegal

Can not find HT-IDE The present environment is not the HT-IDE3000

Syntax error The input syntax is incorrect

No project for debug
No project fi le has been opened in the

HT-IDE3000

ROM bank out of range
The Program Memory dump has exceeded its

range

RAM bank Out of range The Data Memory dump has exceeded its range

Can not run xxx command in emulation mode The xxx command cannot be executed

Can not run xxx command in load file mode The xxx command cannot be executed

Can not run xxx command in write file mode The xxx command cannot be executed

Unterminated string
The character string definition requires balanced

quotes

No Command in history buffer History buffer empty

Open xxx log file error Cannot open the log file

Close xxx log file error Cannot close the log file

Read xxx log file error Cannot read the log file

Write xxx log file error Cannot write to the log file

Not in emulation status
Before executing this command first enter emu-

lation mode

Sources have been modified, please rebuild
The original source file has been modified requir-

ing the files to be rebuilt

Stop by user User has stopped execution

Get PC failed
Reading the value of the Program Counter has

failed

Stack overflow The stack has exceeded its capacity

No debug info
The setup breakpoints have no debug informa-

tion

Cannot find the symbol The indicated symbol cannot be found

Cannot find the register The indicated register cannot be found

54

HT-IDE3000 User�s Guide

C h a p t e r 6

Menu � Window

The HT-IDE3000 provides various kinds of windows which assist the user to emulate or simulate

application programs. These windows (as shown in Fig 6-1) include program Data Memory

(RAM), program code memory (ROM), Trace List, Register, Watch , Stack, Program, Output, etc.

Chapter 6 Menu � Window

55

6

Fig 6-1

Window Menu Commands

� RAM

The RAM window display the contents of the program Data Memory space as shown in Fig 6-2.

The address spaces of the registers are not included in the RAM window because they are dis-

played in the register window. The contents of the RAM window can be modified directly for de-

bugging purpose. The address displayed vertically is the base address while the horizontal

single digit address is the offset. All the digits are displayed in hexadecimal format.

� ROM

The ROM window displays the contents of the program code memory space as shown in Fig

6-3. The ROM address range is from 0 to last address where the last address depends upon the

MCU selected in the project. The horizontal and vertical scrollbars can be used to view any ad-

dress in the ROM window. The contents in ROM window are displayed in hexadecimal format

and cannot be modified.

� Trace List

The Trace List window displays the trace record information as shown in Fig 6-4. The contents

of the trace record can be defined in the Debug command in the Options menu. Double click the

trace record in the Trace List window will activate the source file window and the cursor will stop

at the corresponding line.

56

HT-IDE3000 User�s Guide

Fig 6-2

Fig 6-3

� Register

The Register window displays all the registers defined in the MCU selected in the project. Fig

6-5 shows an example of the Register window of HT48C70-1. The contents of the Register win-

dow can be modified for debugging. Note that the Register window is dockable.

� Watch

The Watch window displays the memory addresses and contents of the specified symbols de-

fined in the data sections, i.e., in the RAM space. The format of the symbol is:

[source_file_name!].symbol_name

The contents of the registers can also be displayed by first typing a period then typing the sym-

bol name or register name and pressing the Enter key. The memory address and contents of the

specified symbol or register will be displayed to the right of the symbol as shown in the following

format:

:[address]=data contents

Chapter 6 Menu � Window

57

Fig 6-4

Fig 6-5

Note that both address and data are displayed in hexadecimal format as shown in Fig 6-6. The

symbol and their corresponding data will be saved by the HT-IDE3000 and displayed the next

time the Watch window is opened. The symbols can be deleted from Watch window by pressing

the delete key. Note that the Watch window is dockable.

� Stack

The Stack window displays the contents of the stack buffer for the MCU selected in the current

project. The maximum stack level is dependent upon the MCU selected. Fig 6-7 shows an ex-

ample of the Stack window. The growth of the stack is numbered from 0. The number is in-

creased by 1 for a push operation (CALL instruction or interrupt) and decreased by 1 for a pop

operation (RET or RETI instructions). The top stack line is highlighted. E.g. The 01: shown in Fig

6-7 is the top stack line. While executing a RET or RETI instruction, the program line number

specified in the top stack line (134 in this example) will be used as the next instruction line to be

executed. Also, the line above the top stack line (00: in this example) will be used as the new top

stack line. If there is no stack line anymore, no line in the Stack window will be highlighted. The

format of the stack line is:

Stack_level: program_counter source_file_name(line_number)

where the stack_level is the level number of the stack, program_counter is the hexadecimal re-

turn address of the calling procedure or the program address of the interrupted instruction,

source_file_name is the complete name of the source file containing the calling or interrupted in-

struction, and line_number is the decimal line number of the instruction after the call instruction

or interrupted instruction in the source file.

58

HT-IDE3000 User�s Guide

Fig 6-6

Fig 6-7

� Program

The Program window displays the program code memory or ROM in disassembly format. The

address range is from 0 to last address where the last address depends upon the MCU selected

in the project.

� Output

The Output window shows the system messages from the HT-IDE3000 when the Build/Rebuild

All commands are executing. By double clicking on the error message line, the window contain-

ing the source file will be displayed and the corresponding line containing the error highlighted.

Chapter 6 Menu � Window

59

60

HT-IDE3000 User�s Guide

C h a p t e r 7

Simulation

The HT-IDE3000 provides a simulation mechanism for debugging application programs. The

HT-IDE3000 simulator provides the same functions as the HT-ICE, but does not require the actual

presence of the HT-ICE to function. In the HT-IDE3000, all the debugging and window functions

for the HT-ICE are valid for the simulator. In addition, the simulator provides an interface for the in-

put and output ports. Although the simulator provides many functions, some hardware characteris-

tics of the MCU cannot be simulated. It is therefore recommended that emulation is carried out on

the application program using the HT-ICE before manufacture of the masked IC.

Some MCU series support emulation mode only and some support simulation mode.

Start the Simulation

Upon entering the HT-IDE3000, two situations may occur. The first is when a project has already

been opened, and the second is when no project has been opened. In the first case, the working

mode of the HT-IDE3000 depends upon the working mode of this project. In the latter case, the

working mode will be in simulation. Even if the working mode of a project is in emulation, it can be

changed by the user to be in simulation. In addition, the working mode of the HT-IDE3000 will be in

simulation when the following situations occur.

� No connection between the HT-ICE and the host machine or when the connection fails.

� The HT-ICE is powered off.

The Debug command in the Option menu provides the function to set the working mode of the

HT-IDE3000. Fig 7-1 displays the contents of the Debug command.

Chapter 7 Simulation

61

7

In addition to MCU simulator, Holtek provides a Virtual Peripheral Manager (VPM) which enable

the user to directly drive and monitor the simulation of inputs and outputs on PC.

Part III gives more details on the VPM.

62

HT-IDE3000 User�s Guide

Fig 7-1

C h a p t e r 8

OTP Programming

Introduction

Holtek�s OTP writer was specifically developed for the range of Holtek OTP (One-Time Program-

mable) MCU devices, allowing users to easily and efficiently burn their programming code into the

OTP devices. Its small and easy to manage size, ease of installation and easy-to-use special fea-

tures are among the advantages of using this OTP writer. Furthermore, the OTP writer has been in-

tegrated on board in the recent version of HT-ICE Emulator, thus, making it more convenient for

users during product development.

Chapter 8 OTP Programming

63

8

Fig 8-1

Installation

Since the OTP writer is built-in on the HT-ICE box, after the completion of HT-ICE installation, the

OTP burning function is ready to be used within the HT-IDE3000 software with no further installa-

tion procedure needed. Refer to Chapter 1 � Overview and Installation.

Adapter Card

The HT-ICE emulator is shipped with a 40-pin TEXTOOL Adapter Card. If the device package for-

mat doesn�t match with this Adapter Card, user has to change the Adapter Card by himself. Refer

to other Holtek Technical Document or visit our website for further information on selecting

Adapter Cards.

64

HT-IDE3000 User�s Guide

Fig 8-2

Programming an OTP Device with the HT-HandyWriter

� Run the HT-HandyWriter Software

Run the HT-HandyWriter software under the Holtek Development System icon in the main Win-

dows programs menu as shown in the Fig 8-3 below:

� LPT � Setup the Printer Port

After running the HT-HandyWriter software program, a window as shown in Fig 8-4 will be shown,

however it is first necessary to setup the correct printer port. By selecting �LPT� command, a sub

menu as shown in Fig 8-5 will be displayed. From here LPT1, LPT2 or LPT3 can be chosen. If the

OTP writer is connected to the HT-ICE, then select the printer port to which the HT-ICE is con-

nected. For example if the HT-ICE is connected to LPT1 then select LPT1 from Fig 8-5. If the OTP

writer is directly connected to the PC printer port then choose the relevant printer port in the same

way.

Chapter 8 OTP Programming

65

Fig 8-3

66

HT-IDE3000 User�s Guide

Fig 8-4

Fig 8-5

� !Body � Select the OTP MCU Type

By clicking on �!Body�, [Set Body] dialog will be shown as Fig 8-6. If there is no MCU type identifier

stored in the OTP device, all the read/write operations will be completed according to the chip type

that selected by users.

� Option � Check the MCU Option

� Option

When the [Option]/Option instruction is selected, a pop-up dialog, as shown in Fig 8-7, will be

displayed. It will illustrate the option that comes from opened file or OTP device content.

� Print

This instruction will print the option comes from opened file or OTP device content.

� HT-HandyWriter Programming Functions

Fig 8-4 shows the internal functions of the HT-HandyWriter. The 9 buttons shown at the right hand

side of this window each represent an instruction, the function of which is explained below:

� Open

This opens a file with the .OTP suffix, which will load the program contents into the PC ram

memory. This data will be accessed when programming the relevant OTP device. After select-

ing �Open�, the file dialogue box will be displayed from which the correct folder and file name

can be chosen. The file content will be displayed in the message window after being opened,

and the checksum of the opened file will be shown underneath the �Read� button.

Chapter 8 OTP Programming

67

Fig 8-6

Fig 8-7

� Program

This instruction encompasses two functions. The first is to place the program data in the PC ram

memory into the OTP device, the second is a verification check to verify that the actual data

burned into the OTP device is the same as that in the PC ram memory data. After verification the

result of this process will be shown on the HT-HandyWriter display.

� Verify

The contents of the presently loaded OTP device will be read and checked that it is the same as

the data loaded into the PC ram memory, the results of which will be displayed on the

HT-HandyWriter display.

� Blank Check

Check that the presently loaded OTP device has not previously been written to. The results of

this check will be displayed on the HT-HandyWriter display. If the device is not empty, the mem-

ory area that has been written to will also be shown on the display.

� Lock

This instruction will implement the protect function in the OTP device preventing the contents of

this IC from being read. After programming an OTP device, this instruction can then be used to

protect the contents.

� Auto

This instruction will execute in order the three instructions Blank Check, Program and Verify. If

any of the instructions do not execute correctly, the process will be halted and the following in-

struction not executed. There is also a lock function, which can be selected to prevent the data

from being read out after programming. This lock function should first be selected before the

Auto button pressed.

� Read

This instruction will read out the contents of the OTP device presently loaded into the OTP writer

and store them in the PC ram memory. This instruction will also cause the file checksum to be

displayed underneath the �Read� button. If required, this data can also be stored in a file with the

.OTP file suffix.

� Chip Info

This instruction will read power-on ID, software ID, ROM size, option size from IC and display

�Get info from chip� message to inform users the listed information comes from IC interior. If

there is no such information inside IC, the specification defined by �!Body� command will be

shown. It will display �Get info from ini� to inform users that above information comes from sys-

tem setting.

� HT-HandyWriter Additional Functions

� Duplicate � automatic OTP detection and duplication

This function enables multi-OTPs of the same type to be continuously programmed. After open-

ing the file using the Open instruction and inserting the OTP into the TEXTOOL socket, the OTP

writer will automatically detect the device and then proceed to implement the functions that have

been setup. In this way, after the desired .OTP file has been opened, it is only necessary to

place the correct device in the socket to program a large number of devices.

Before using this function, it is first necessary to setup the Auto-Program functions that are re-

quired. To setup these functions, select the [duplicate]/Setup instruction as shown in Fig 8-8.

The Duplicate Setup window as shown in Fig 8-9 will then be displayed from which the user can

select the required functions from the Blank Check, Program, Verify and Lock list.

68

HT-IDE3000 User�s Guide

When the [Duplicate]/Enable instruction is selected as shown in Fig 8-10, the Auto-Program

function will be activated. After this instruction has been activated, it is now possible to proceed

with multi-chip programming. After the chips have all been programmed, the Auto-Program

function can be switched off, by again selecting the toggle action [Duplicate]/Enable instruction

as shown in Fig 8-10.

Chapter 8 OTP Programming

69

Fig 8-8

Fig 8-9

� S/N � Writing Serial Numbers

The serial number function allows a user specified serial number to be written into each device.

This serial number and its address is specified by the user and is written into the lower byte ad-

dress of the Program ROM for each device. After a serial number is written into a device, an

auto-incrementing function ensures that subsequently programmed devices will contain serial

numbers incremented by one each time.

First it is required to setup the initial data and fixed address of the first serial number. After se-

lecting [S/N]/Setup, the window, as shown in Fig 8-11, can be used to input the initial serial num-

ber�s data and its corresponding address.

After the initial data and address information has been setup, [S/N]/Enable should be selected

to activate the serial number function. When the serial number function is activated, the present

serial number�s corresponding address and data will be displayed at the lower right hand side of

the main window. During the programming stage the first device to be programmed will contain

the previously setup serial number data in its Program ROM at the indicated address. Subse-

quent devices will contain serial numbers incremented by one for each additional device. To re-

set the order of serial numbers, again select the [S/N]/Setup function.

70

HT-IDE3000 User�s Guide

Fig 8-10

Chapter 8 OTP Programming

71

Fig 8-11

Fig 8-12

System Messages

� HT-HandyWriter Connect to LPT1.

OTP writer already connected to LPT1.

� Cannot Connect to ICE

Connection problems between the OTP writer, the HT-ICE and the printer port.

� Invalid EV Chip!

The OTP writer is unable to support the EV chip in the HT-ICE. The HT-ICE must be changed for

correct operation to take place.

� Connect to HT-HandyWriter Through ICE

The OTP writer is successfully connected via the HT-ICE.

� Cannot find HT-HandyWriter, Please Connect It to ICE

Or This HT-HandyWriter is an Old Version

The HT-ICE is already connected to the printer port, but the OTP writer is not connected to the

HT-ICE. It may also be that an old version of the OTP writer is being used (THANDYOTP-A) so the

system is unable to detect a good connection. If the former case, please connect the OTP writer

directly to the ICE.

� File PID: ADh, OID: 50h

The opened files recorded power-on ID is ADh, the software ID is 50h.

� Invalid OTP File Format

The opened file format is incorrect.

� The Chip PID: ADh, OID: 50h Doesn t Match with the File PID: ADh, OID: 51h

Are You Sure to Continue?

The type of OTP device and the chip supported by the opened file does not match.

� Chip ROM Size: 0400h, File ROM Size: 0800h. System Will Set ROM Size as 0400h.

Are You Sure to Continue?

The OTP device has 400h of writable space, the file content is 800h, so the OTP writer can only

write 400h of data into the contents of the OTP device.

� Addr: xxxxh, Data: yyyyh, Rdata: zzzzh

Program/Option Verify Failed!

Errors exist in either the program or option verification information. The reason is because the

data zzzzh at the address xxxxh in the OTP device is not the same as the data yyyyh in the PC ram

memory.

� Addr: xxxxh, Data: zzzzh

Not Blank!

The OTP device is not blank as the address xxxxh contains the data zzzzh, inhibiting the imple-

mentation of further instructions.

� Chip Mismatched!

The OTP device presently in the OTP writer and the OTP device mentioned in the .OTP file do not

match, inhibiting the implementation of further instructions.

� Chip is Locked!

The OTP device presently in the OTP writer is locked, inhibiting the implementation of further in-

structions.

72

HT-IDE3000 User�s Guide

� No Data to Verify/Program!

Before executing the Verify or Program instruction, the .OTP file must be loaded using the �Open�

function in the HT-HandyWriter system software.

Chapter 8 OTP Programming

73

74

HT-IDE3000 User�s Guide

P a r t I I

Development Language and Tools

Part II Development Language and Tools

75

76

HT-IDE3000 User�s Guide

C h a p t e r 9

Assembly Language and

Cross Assembler

Assembly-Language programs are written as source files. They can be assembled into object files

by the Holtek Cross Assembler. Object files are combined by the Cross Linker to generate a task

file.

A source program is made up of statements and look up tables, giving directions to the Cross As-

sembler at assembly time or to the processor at run time. Statements are constituted by mnemon-

ics (operations), operands and comments.

Notational Conventions

The following list describes the notations used by this document.

Example of convention Description of convention

[optional items]

Syntax elements that are enclosed by a pair of brackets are

optional. For example, the syntax of the command line is as

follows:

HASM [options] filename [;]

In the above command line, options and semicolon; are both

optional, but filename is required, except for the following

case:

Brackets in the instruction operands. In this case,

the brackets refer to memory address.

{choice1 | choice2}

Braces and vertical bars stand for a choice between two or

more items. Braces enclose the choices whereas vertical

bars separate the choices. Only one item can be chosen.

Chapter 9 Assembly Language and Cross Assembler

77

9

Example of convention Description of convention

Repeating elements...

Three dots following an item signify that more items with the

same form may be entered. For example, the directive PUB-

LIC has the following form:

PUBLIC name1 [,name2 [,...]]

In the above form, the three dots following name2 indicate

that many names can be entered as long as each is pre-

ceded by a comma.

Statement Syntax

The construction of each statement is as follows:

[name] [operation] [operands] [;comment]

� All fields are optional.

� Each field (except the comment field) must be separated from other fields by at least one space

or one tab character.

� Fields are not case-sensitive, i.e., lower-case characters are changed to upper-case characters

before processing.

Name

Statements can be assigned labels to enable easy access by other statements. A name consists

of the following characters:

A~Z a~z 0~9 ? _ @

with the following restrictions :

� 0~9 cannot be the first character of a name

� ? cannot stand alone as a name

� Only the first 31 characters are recognized

Operation

The operation defines the statement action of which two types exist, directives and instructions. Di-

rectives give directions to the Cross Assembler, specifying the manner in which the Cross Assem-

bler is to generate the object code at assembly time. Instructions, on the other hand, give

directions to the processor. They are translated to object code at assembly time, the object code in

turn controls the behavior of the processor at run time.

Operand

Operands define the data used by directives and instructions. They can be made up of symbols,

constants, expressions and registers.

78

HT-IDE3000 User�s Guide

Comment

Comments are the descriptions of codes. They are used for documentation only and are ignored

by the Cross Assembler. Any text following a semicolon is considered a comment.

Assembly Directives

Directives give direction to the Cross Assembler, specifying the manner in which the Cross Assem-

bler generates object code at assembly time. Directives can be further classified according to their

behavior as described below.

Conditional Assembly Directives

The conditional block has the following form:

IF

statements

[ELSE

statements]

ENDIF

� Syntax

IF expression

IFE expression

� Description

The directives IF and IFE test the expression following them.

The IF directive grants assembly if the value of the expression is true, i.e. non-zero.

The IFE directive grants assembly if the value of the expression is false, i.e. zero.

� Example
IF debugcase

ACC1 equ 5
extern username: byte

ENDIF

In this example, the value of the variable ACC1 is set to 5 and the username is declared as an

external variable if the symbol debugcase is evaluated as true, i.e. nonzero.

� Syntax

IFDEF name

IFNDEF name

� Description

The directives IFDEF and IFNDEF test whether or not the given name has been defined. The

IFDEF directive grants assembly only if the name is a label, a variable or a symbol. The IFNDEF di-

rective grants assembly only if the name has not yet been defined. The conditional assembly direc-

tives support a nesting structure, with a maximum nesting level of 7.

� Example
IFDEF buf_flag

buffer DB 20 dup(?)
ENDIF

In this example, the buffer is allocated only if the buf_flag has been previously defined.

Chapter 9 Assembly Language and Cross Assembler

79

File Control Directives

� Syntax

INCLUDE file-name

or

INCLUDE �file-name�

� Description

This directive inserts source codes from the source file given by file-name into the current

source file during assembly. Cross Assembler supports at most 7 nesting levels.

� Example
INCLUDE macro.def

In this example, the Cross Assembler inserts the source codes from the file macro.def into the

current source file.

� Syntax

PAGE size

� Description

This directive specifies the number of the lines in a page of the program listing file. The page

size must be within the range from 10 to 255, the default page size is 60.

� Example

PAGE 57

This example sets the maximum page size of the listing file to 57 lines.

� Syntax

.LIST

.NOLIST

� Description

The directives .LIST and .NOLIST decide whether or not the source program lines are to be

copied to the program listing file. .NOLIST suppresses copying of subsequent source lines to

the program listing file. .LIST restores the copying of subsequent source lines to the program

listing file. The default is .LIST.

� Example

.NOLIST

mov a, 1

mov b1, a

.LIST

In this example, the two instructions in the block enclosed by .NOLIST and .LIST are sup-

pressed from copying to the source listing file.

� Syntax

.LISTMACRO

.NOLISTMACRO

� Description

The directive .LISTMACRO causes the Cross Assembler to list all the source statements, in-

cluding comments, in a macro. The directive .NOLISTMACRO suppresses the listing of all macro

expansions. The default is .NOLISTMACRO.

80

HT-IDE3000 User�s Guide

� Syntax

.LISTINCLUDE

.NOLISTINCLUDE

� Description

The directive .LISTINCLUDE inserts the contents of all included files into the program listing.

The directive .NOLISTINCLUDE suppresses the addition of included files. The default is

.NOLISTINCLUDE.

� Syntax

MESSAGE �text-string�

� Description

The directive MESSAGE directs the Cross Assembler to display the text-string on the

screen. The characters in the text-string must be enclosed by a pair of single quotation

marks.

� Syntax

ERRMESSAGE �error-string�

� Description

The directive ERRMESSAGE directs the Cross Assembler to issue an error. The characters in the

error-string must be enclosed by a pair of single quotation marks.

Program Directives

� Syntax (comment)

; text

� Description

A comment consists of characters preceded by a semicolon (;) and terminated by an embedded

carriage-return/line-feed.

� Syntax

name .SECTION [align] [combine] �class�

� Description

The .SECTION directive marks the beginning of a program section. A program section is a col-

lection of instructions and/or data whose addresses are relative to the section beginning with the

name which defines that section. The name of a section can be unique or be the same as the

name given to other sections in the program. Sections with the same complete names are

treated as the same section.

The optional align type defines the alignment of the given section. It can be one of the follow-

ing:

BYTE uses any byte address (the default align type)

WORD uses any word address

PARA uses a paragraph address

PAGE uses a page address

For the CODE section, the byte address is in a single instruction unit. BYTE aligns the section at

any instruction address, WORD aligns the section at any even instruction address, PARA aligns

the section at any instruction address which is a multiple of 16, and PAGE aligns the section at

any instruction address with a multiple of 256.

Chapter 9 Assembly Language and Cross Assembler

81

For DATA sections, the byte address is in one byte units (8 bits/byte). BYTE aligns the section at

any byte address, WORD aligns the section at any even address, PARA aligns the section at

any address which is a multiple of 16, and PAGE aligns the section at any address which is a

multiple of 256.

The optional combine type defines the way of combining sections having the same complete

name (section and class name). It can be any one of the following:

� COMMON
Creates overlapping sections by placing the start of all sections with the same complete name
at the same address. The length of the resulting area is the length of the longest section.

� AT address

Causes all label and variable addresses defined in a section to be relative to the given ad-
dress. The address can be any valid expression except a forward reference. It is an absolute
address in a specified ROM/RAM bank and must be within the ROM/RAM range.

If no combine type is given, the section is combinative, i.e., this section can be concatenated

with all sections having the same complete name to form a single, contiguous section.

The class type defines the sections that are to be loaded in the contiguous memory. Sections

with the same class name are loaded into the memory one after another. The class name CODE

is used for sections stored in ROM, and the class name DATA is used for sections stored in

RAM. The complete name of a section consists of a section name and a class name. The named

section includes all codes and data below (after) it until the next section is defined.

� Syntax

ROMBANK banknum section-name [,section-name,...]

� Description

This directive declares which sections are allocated to the specified ROM bank. The banknum

specifies the ROM bank, ranging from 0 to the maximum bank number of the destination MCU.

The section-name is the name of the section defined previously in the program. More than

one section can be declared in a bank as long as the total size of the sections does not exceed

the bank size of 8K words. If this directive is not declared, bank 0 is assumed and all CODE sec-

tions defined in this program will be in bank 0. If a CODE section is not declared in any ROM

bank, then bank 0 is assumed.

� Syntax

RAMBANK banknum section-name [,section-name,...]

� Description

This directive is similar to ROMBANK except that it specifies the RAM bank, the size of RAM bank

is 256 bytes.

� Syntax

END

� Description

This directive marks the end of a program. Adding this directive to any included file should be

avoided.

82

HT-IDE3000 User�s Guide

� Syntax

ORG expression

� Description

This directive sets the location counter to expression. The subsequent code and data offsets

begin at the new offset specified by expression. The code or data offset is relative to the be-

ginning of the section where the directive ORG is defined. The attribute of a section determines

the actual value of offset, absolute or relative.

� Example
ORG 8
mov A, 1

In this example, the statement mov A, 1 begins at location 8 in the current section.

� Syntax

PUBLIC name1 [,name2 [,...]]
EXTERN name1:type [,name2:type [, ...]]

� Description

The PUBLIC directive marks the variable or label specified by a name that is available to other

modules in the program. The EXTERN directive, on the other hand, declares an external vari-

able, label or symbol of the specified name and type. The type can be one of the four types:

BYTE, WORD and BIT (these three types are for data variables), and NEAR (a label type and

used by call or jmp).

� Example
PUBLIC start, setflag
EXTERN tmpbuf:byte

CODE .SECTION �CODE�

start:
mov a, 55h
call setflag
....

setflag proc
mov tmpbuf, a
ret

setflag endp
end

In this example, both the label start and the procedure setflag are declared as public vari-

ables. Programs in other sources may refer to these variables. The variable tmpbuf is also de-

clared as external. There should be a source file defining a byte that is named tmpbuf and is

declared as a public variable.

Chapter 9 Assembly Language and Cross Assembler

83

� Syntax

name PROC
name ENDP

� Description

The PROC and ENDP directives mark a block of code which can be called or jumped to from other

modules. The PROC creates a label name which stands for the address of the first instruction of a

procedure. The Cross Assembler will set the value of the label to the current value of the location

counter.

� Example
toggle PROC
mov tmpbuf, a
mov a, 1
xorm a, flag
mov a, tmpbuf
ret
toggle ENDP

� Syntax

[label:] DC expression1 [,expression2 [,...]]

� Description

The DC directive stores the value of expression1, expression2 etc. in consecutive mem-

ory locations. This directive is used for the CODE section only. The bit size of the result value is

dependent on the ROM size of the MCU. The Cross Assembler will clear any redundant bits;

expression1 has to be a value or a label. This directive may also be employed to setup the ta-

ble in the code section.

� Example
table1: DC 0128h, 025CH

In this example, the Cross Assembler reserves two units of ROM space and also stores 0128H

and 025CH into these two ROM units.

Data Definition Directives

An assembly language program consists of one or more statements and comments. A statement or

comment is a composition of characters, numbers, and names. The assembly language supports inte-

ger numbers. An integer number is a collection of binary, octal, decimal, or hexadecimal digits along

with an optional radix. If no radix is given, the Cross Assembler uses the default radix (decimal). The ta-

ble lists the digits that can be used with each radix.

Radix Type Digits

B Binary 01

O Octal 01234567

D Decimal 0123456789

H Hexadecimal 0123456789ABCDEF

84

HT-IDE3000 User�s Guide

� Syntax

[name] DB value1 [,value2 [, ...]]
[name] DW value1 [,value2 [, ...]]
[name] DBIT
[name] DB repeated-count DUP(?)
[name] DW repeated-count DUP(?)

� Description

These directives reserve the number of bytes/words specified by the repeated-count or reserve

bytes/words only. value1 and value2 should be ? due to the microcontroller RAM . The Cross

Assembler will not initialize the RAM data. DBIT reserves a bit. The content ? denotes

uninitialized data, i.e., reserves the space of the data. The Cross Assembler will gather every 8

DBIT together and reserve a byte for these 8 DBIT variables.

� Example

DATA .SECTION �DATA�

tbuf DB ?
chksum DW ?
flag1 DBIT
sbuf DB ?
cflag DBIT

In this example, the Cross Assembler reserves byte location 0 for tbuf, location 1 and 2 for

chksum, bit 0 of location 3 for flag1, location 4 for sbuf and bit 1 of location 3 for cflag.

� Syntax

name LABEL {BIT|BYTE|WORD}

� Description

The name with the data type has the same address as the following data variable

� Example
lab1 LABEL WORD
d1 DB ?
d2 DB ?

In this example, d1 is the low byte of lab1 and d2 is the high byte of lab1.

� Syntax

name EQU expression

� Description

The EQU directive creates absolute symbols, aliases, or text symbols by assigning an expres-

sion to name. An absolute symbol is a name standing for a 16-bit value; an alias is a name rep-

resenting another symbol; a text symbol is a name for another combination of characters. The

namemust be unique, i.e. not having been defined previously. The expression can be an inte-

ger, a string constant, an instruction mnemonic, a constant expression, or an address expres-

sion.

� Example
accreg EQU 5
bmove EQU mov

In this example, the variable accreg is equal to 5, and bmove is equal to the instruction mov.

Chapter 9 Assembly Language and Cross Assembler

85

Macro Directives

Macro directives enable a block of source statements to be named, and then that name to be

re-used in the source file to represent the statements. During assembly, the Cross Assembler auto-

matically replaces each occurrence of the macro name with the statements in the macro definition.

A macro can be defined at any place in the source file as long as the definition precedes the first

source line that calls this macro. In the macro definition, the macro to be defined may refer to other

macros which have been previously defined. The Cross Assembler supports a maximum of 7 nest-

ing levels.

� Syntax

name MACRO [dummy-parameter [, ...]]
statements
ENDM

The Cross Assembler supports a directive LOCAL for the macro definition.

� Syntax

name LOCAL dummy-name [, ...]

� Description

The LOCAL directive defines symbols available only in the defined macro. It must be the first line

following the MACRO directive, if it is present. The dummy-name is a temporary name that is re-

placed by a unique name when the macro is expanded. The Cross Assembler creates a new ac-

tual name for dummy-name each time the macro is expanded. The actual name has the form

??digit, where digit is a hexadecimal number within the range from 0000 to FFFF. A label

should be added to the LOCAL directive when labels are used within the MACRO/ENDM block.

Otherwise, the Cross Assembler will issue an error if this MACRO is referred to more than once in

the source file.

In the following example, tmp1 and tmp2 are both dummy parameters, and are replaced by ac-

tual parameters when calling this macro. label1 and label2 are both declared LOCAL, and

are replaced by ??0000 and ??0001 respectively at the first reference, if no other MACRO is re-

ferred. If no LOCAL declaration takes place, label1 and label2will be referred to labels, simi-

lar to the declaration in the source program. At the second reference of this macro, a multiple

define error message is displayed.

Delay MACRO tmp1, tmp2
LOCAL label1, label2
mov a, 70h
mov tmp1, a

label1:
mov tmp2, a

label2:
clr wdt1
clr wdt2
sdz tmp2
jmp label2
sdz tmp1
jmp label1
ENDM

86

HT-IDE3000 User�s Guide

The following source program refers to the macro Delay ...

The Cross Assembler will expand the macro Delay as shown in the following listing file. Note that

the offset of each line in the macro body, from line 4 to line 17, is 0000. Line 24 is expanded to 11

lines and forms the macro body. In addition the formal parameters, tmp1 and tmp2, are replaced

with the actual parameters, BCnt and SCnt, respectively.

Chapter 9 Assembly Language and Cross Assembler

87

� � � � � � �

� � � � � 	
 � � �
 � � � 	 � � � � � � � � � �

� � � � � � � � �

� � � � � � � � � � � � � � 	
 � � � � 	
 �

� �

� � � � � � 	 � � � � � � � � � ! "

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � 	 � � � � � � � 	
 � � � �

� � � � � � #

� � � � � � � � � � � � $ % � �

� � � � � � � � � � � � $ % � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � � % & � � � � � 	
 �

� � � � � � ' 	
 � � � � � � � � � �

� � � � � � () � �

% � � � � � � � � � � � * � + % � � � +

, � * � � % � � -

� � * � � % � � -

� � % � � � � � � � � � * � � � � ! � + � � % � +

� � � � � � , � * � � � � � * �

� * %

Assembly Instructions

The syntax of an instruction has the following form:

[name:] mnemonic [operand1[,operand2]] [;comment]

where

name: � label name

mnemonic � instruction name (keywords)

operand1 � registers

memory address

operand2 � registers

memory address

immediate value

88

HT-IDE3000 User�s Guide

. � � � # � � � � � 	 � � � � � � � � � / � � � � 0 � � � � � 1 � � � � 	 � � � � � 2 � � � � * � � � 3 ! � � � � � � 4 � � � � �

� � � � � � ! ! ! ! �

� � � � � � ! ! ! ! � � � � � � � � � � � � � � � � � � � 	
 � � �
 � � � 	 � � � � � � � � � �

� � � 5 � � ! ! ! ! � �

� � � 6 � � ! ! ! ! � 	
 � � � � 	
 �

� � � 7 � � ! ! ! ! �

� � � 8 � � ! ! ! ! � 	 � � � � � � � � � ! "

� � � � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � 3 � � ! ! ! ! � #

� � � 9 � � ! ! ! ! � 	 � � � � � � � 	
 � � � �

� � � ! � � ! ! ! ! � #

� � � � � � ! ! ! ! � � � � � $ % � �

� � � � � � ! ! ! ! � � � � � $ % � �

� � � 5 � � ! ! ! ! � % & � � � � � 	
 �

� � � 6 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � 7 � � ! ! ! ! � % & � � � � � 	
 �

� � � 8 � � ! ! ! ! � ' 	
 � � � � � � � � � �

� � � � � ! ! ! ! � () � �

� � � 3 � � ! ! ! !

� � � 9 � � ! ! ! ! � � � � � � � � � � � � � � % � � � � � � � � � � � * � + % � � � +

� � � ! � � ! ! ! ! � � ! ! � � � � � � � � � � , � * � � % � � -

� � � � � � ! ! ! � � � ! ! � � � � � � � � � � � � * � � % � � -

� � � � � � ! ! ! �

� � � 5 � � ! ! ! ! � � � � � � � � � � � � � � � � % � � � � � � � � � * � � � � ! � + � � % � +

� � � 6 � � ! ! ! ! � , � * � � � � � * �

� � � 6 � � ! ! ! ! � � ! . ! � � � � � � � � � � � � � � 	 � � � � � � � � � ! "

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � , � * � � � �

� � � 6 � � ! ! ! � � � � � � � � � � � � � � � � - - ! ! ! ! #

� � � 6 � � ! ! ! � � � ! ! 3 ! � � � � � � � � � � � � � � 	 � � � � � � � � * � � � �

� � � 6 � � ! ! ! 5 � � � � � � � � � � � � � � � - - ! ! ! � #

� � � 6 � � ! ! ! 5 � � ! ! ! � � � � � � � � � � � � � � � � � � � � � $ % � �

� � � 6 � � ! ! ! 6 � � ! ! ! 7 � � � � � � � � � � � � � � � � � � � � $ % � �

� � � 6 � � ! ! ! 7 � � � 3 ! � � � � � � � � � � � � � � � % & � � � � � � * �

� � � 6 � � ! ! ! 8 � � � 3 ! 5 � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! �

� � � 6 � � ! ! ! � � � 3 ! � � � � � � � � � � � � � � � % & � � � � , � * �

� � � 6 � � ! ! ! 3 � � � 3 ! � � � � � � � � � � � � � � � ' 	
 � � � � - - ! ! ! !

� � � 7 � � ! ! ! 9 � � � � � � � � � � � � � � � * %

� � � � � � � � ! � (� �

Name

A name is made up of letters, digits, and special characters, and is used as a label.

Mnemonic

Mnemonic is an instruction name dependent upon the type of the MCU used in the source pro-

gram.

Operand, Operator and Expression

Operands (source or destination) are the argument defining values that are to be acted on by in-

structions. They can be constants, variables, registers, expressions or keywords. When using the

instruction statements, care must be taken to select the correct operand type, i.e. source operand

or destination operand. The dollar sign $ is a special operand, namely the current location oper-

and.

An expression consists of many operands that are combined to describe a value or a memory loca-

tion. The combined operators are evaluated at assembly time. They can contain constants, sym-

bols, or any combination of constants and symbols that are separated by arithmetic operators.

Operators specify the operations to be performed while combining the operands of an expression.

The Cross Assembler provides many operators to combine and evaluate operands. Some opera-

tors work with integer constants, some with memory values, and some with both. Operators han-

dle the calculation of constant values that are known at the assembly time. The following are some

operators provided by the Cross Assembler.

� Arithmetic operators + - * / % (MOD)

� SHL and SHR operators

� Syntax
expression SHR count
expression SHL count

The values of these shift bit operators are all constant values. The expression is shifted right

SHR or left SHL by the number of bits specified by count. If bits are shifted out of position, the

corresponding bits that are shifted in are zero-filled. The following are such examples:

mov A, 01110111b SHR 3 ; result ACC=00001110b

mov A, 01110111b SHL 4 ; result ACC=01110000b

� Bitwise operators NOT, AND, OR, XOR

� Syntax
NOT expression
expression1 AND expression2
expression1 OR expression2
expression1 XOR expression2

NOT is a bitwise complement.

AND is a bitwise AND.

OR is a bitwise inclusive OR.

XOR is a bitwise exclusive OR.

Chapter 9 Assembly Language and Cross Assembler

89

� OFFSET operator

� Syntax
OFFSET expression

The OFFSET operator returns the offset address of an expression. The expression can be

a label, a variable, or other direct memory operand. The value returned by the OFFSET operator

is an immediate operand.

� LOW, MID and HIGH operator

� Syntax
LOW expression
MID expression
HIGH expression

The LOW/MID/HIGH operator returns the value of an expression if the result of the ex-

pression is an immediate value. The LOW/MID/HIGH operators will then take the low/mid-
dle/high byte of this value. But if the expression is a label, the LOW/MID/HIGH operator will
take the values of the low/middle/high byte of the program count of this label.

� BANK operator

� Syntax
BANK name

The BANK operator returns the bank number allocated to the section of the name declared. If
the name is a label then it returns the rom bank number. If the name is a data variable then it
returns the ram bank number. The format of the bank number is the same as the BP defined.
For more information of the format please refer to the data sheets of the corresponding MCUs.
(Note: The format of the BP might be different between MCUs.)
Example 1:

mov A, BANK start
mov BP,A
jmp start

Example 2:

mov A, BANK var
mov BP,A
mov A, OFFSET var
mov MP1,A
mov A,IAR1

� Operator precedence

Precedence Operators

1 (Highest)
2
3
4
5

6
7
8
9 (Lowest)

(), []

+, � (unary), LOW, MID, HIGH, OFFSET, BANK
*, /, %, SHL, SHR

+, � (binary)
> (greater than), >= (greater than or equal to),
< (less than), <= (less than or equal to)
== (equal to), != (not equal to)
! (bitwise NOT)
& (bitwise AND)
|(bitwise OR), ^(bitwise XOR)

90

HT-IDE3000 User�s Guide

Miscellaneous

Forward References

The Cross Assembler allows reference to labels, variable names, and other symbols before they

are declared in the source code (forward named references). But symbols to the right of EQU are

not allowed to be forward referenced.

Local Labels

A local label is a label with a fixed form such as $number. The number can be 0~29. The function of

a local label is the same as a label except that the local label can be used repeatedly. The local la-

bel should be used between any two consecutive labels and the same local label name may used

between other two consecutive labels. The Cross Assembler will transfer every local label into a

unique label before assembling the source file. At most 30 local labels can be defined between two

consecutive labels.

Example.

Label1: ; label
$1: ;; local label

mov a, 1
jmp $3

$2: ;; local label
mov a, 2
jmp $1

$3: ;; local label
jmp $2

Label2: ; label
jmp $1

$0: ;; local label
jmp Label1

$1: jmp $0
Label3:

Chapter 9 Assembly Language and Cross Assembler

91

Reserved Assembly Language Words

The following tables list all reserved words used by the assembly language.

� Reserved Names (directives, operators)

$ DUP INCLUDE NOT

* DW LABEL OFFSET

+ ELSE .LIST OR

� END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

� Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

� Reserved Names (registers names)

A WDT WDT1 WDT2

92

HT-IDE3000 User�s Guide

Cross Assembler Options

The Cross Assembler options can be set via the Options menu Project command in HT-IDE3000.

The Cross Assembler Options is located on the center part of the Project Option dialog box, as

shown in Fig 3-12.

The symbols could be defined in the Define Symbol edit box.

� Syntax

symbol1[=value1] [, symbol2[=value2] [, ...]]

� Example,
debugflag=1, newver=3

The check box of the Generate listing file is used to decide whether the listing file should be gener-

ated or not. If the check box is checked, the listing file will be generated. Otherwise, it won�t be gen-

erated.

Assembly Listing File Format

The Assembly Listing File contains the source program listing and summary information. The first

line of each page is a title line which include company name, the Cross Assembler version num-

ber, source file name, date/time of assembly and page number.

Source Program Listing

Each line in the source program has the following syntax:

line-number offset [code] statement

� Line-number is the number of the line starting from the first statement in the assembly source

file (4 decimal digits).

� The 2nd field � offset � is the offset from the beginning of the current section to the code (4

hexadecimal digits)

� The 3rd field � code � is present only if the statement generates code or data (two hexadecimal

4-digit data)

The code shows the numeric value in hexadecimal if the value is known at assembly time. Oth-

erwise, a proper flag will indicate the action required to compute the value. The following two

flags may appear behind the code field.

R � relocatable address (Cross Linker must resolve)

E � external symbol (Cross Linker must resolve)

The following flag may appear before the code field

= � EQU or equal-sign directive

The following 2 flags may appear in the code field

---- � section address (Cross Linker must resolve)

nn[xx] � DUP expression: nn DUP(?)

� The 4th field � statement � is the source statement shown exactly as it appears in the source

file, or as expanded by a macro. The following flags may appear before a statement.

n � Macro-expansion nesting level

C � line from INCLUDE file

Chapter 9 Assembly Language and Cross Assembler

93

� Summary

l l l l � line number (4 digits, right alignment)

oooo � offset of code (4 digits)

hhhh � two 4-digits for opcode

E � external reference

C � statement from included file

R � relocatable name

n � Macro-expansion nesting level

Summary of Assembly

The total warning number and total error number is the information provided at the end of the

Cross Assembler listing file.

Miscellaneous

If any errors occur during assembly, each error message and error number will appear directly be-

low the statement where the error occurred.

94

HT-IDE3000 User�s Guide

� � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	
 � � � � � � � � 	

 � � � � � �

� � �
� � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � � �

� �

� � � �

� Example of Assembly Listing File

Chapter 9 Assembly Language and Cross Assembler

95

. � � � # � � � � 4 � (� � � � � � � � / � � � � 0 � � � � � 1 � � � � 	 � � � � � 2 � � � � * � � � 3 8 � � � � � � 4 � � � � �

�

�

5

6

7

8

�

�

5

6

7

8

3

9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

� !

� �

� �

� 5

� 6

� 7

� 8

�

� 3

� 9

5 !

5 �

5 �

5 5

5 5

5 5

5 5

5 5

5 6

5 7

5 8

5

5 3

5 9

6 !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! !

! ! ! !

! ! ! �

! ! ! �

! ! ! 5

! ! ! 6

! ! ! 7

! ! ! 7

! ! ! 8

! ! !

! ! !

! ! ! 3

! ! ! 9

! ! ! �

! ! ! ,

! ! ! �

! ! ! �

! ! � !

� � !

�

�

�

�

�

�

�

! !

! !

! !

! . 7 7

! ! 3 !

! ! 3 !

! . � �

! ! 9 5

! . ! !

! ! 9 �

� . � 6

! ! !

! . ! !

! . ! !

� 3 ! !

� � 5 6

� , � �

(� �

 � � � � 8 !

� � � � � � * � � : % �
� � � � � 	 � � �

 �

 � �

 �

 � �

 �

 � �

� ; :

� ; :

� ; :

� ; :

� ; :

� ; :

< � � " =

< � 5 " =

< � 6 " =

< � 7 " =

< � 8 " =

< � " =

> � * � � : % � ? � � 	
 � � � � * � ?

� @ � � *

� @ � � *

� �
 �

� � �
 �

� * % 	

	 � � �

� @ � � � �

� @ � � �

* � �

� � � �

� �
 �

	 � � � � �

	 � � �
 � �

� �
 �

� * % 	

% � � �

� �

� �

� � � �

� � % �

	 � �

	 � �

	 � �

	 � �

	 � �

� �
 �

	 � � � �

	 � �

� �
 �

� �

	 � �

	 � �

	 � �

' 	

7 8 3

(. � �

�

(

(

(

�

(

�

�

�

�

� � � � � � � * � + % � � � +

� % � � -

� % � � -

� % � � �

� � � � � � � * � + � � % � +

� � � ! 7 7 "

� � � � �

� @ � � � � � �

� � � ! � � "

 � � � � �

� � ! ! "

� � � � �

� � � � � * 0 � � @ � � � �

� � � � � � � � � � � @ � � �

� @ � � � �

� � 5 6 " � � 7 8 3 " � � ! � � � % " � � ! � � � � "

	 � � � � � � + � � 	
 � � � 4 � � � 	 � � +

#

#

	 � � �

! ! "
�

< � � " = � � �

< � 6 " =

� * %

% $

96

HT-IDE3000 User�s Guide

C h a p t e r 1 0

Holtek C Language

Introduction

The Holtek C compiler is based on ANSI C. Due to the architecture of the Holtek microcontroller,

only a subset of ANSI C is supported. This chapter describes the C programming language sup-

ported by the Holtek C compiler.

This chapter covers the following topics:

� C program structure

� Identifiers

� Data types

� Constants

� Operators

� Program control flow

� Functions

� Pointers and arrays

� Structures and unions

� Preprocessor directives

� Holtek C language extensions and restrictions

Chapter 10 Holtek C Language

97

10

C Program Structure

A C program is a collection of statements, comments, and preprocessor directives.

Statements

Statements, which may consist of variables, constants, operators and functions, are terminated

with a semicolon and perform the following operations:

� Declare data variables and data structures

� Define data space

� Perform arithmetic and logical operations

� Perform program control operations

One line can contain more than one statement. Compound statements are one or more state-

ments contained within a pair of braces and can be used as a single statement. Some statements

and preprocessor directives are required in the Holtek C source files. The following is a shell:

void main()
{
/* user application source code */
}

The main function is defined within the user application source code. There may be more than one

source file for an application, but only one source file can contain the main function.

Comments

Comments are used to document the meaning and operation of the source statements and can be

placed anywhere in a program except for the middle of a C keyword, function name or variable

name. The C compiler ignores all comments. Comments cannot be nested. The Holtek C compiler

supports two kinds of comments, block comment and line comment.

� Block Comment

The block comment begins with /* and ends with */, for example:

/* this is a block comment */

A block comment�s end character */ may be placed in a different line from the beginning block

comment characters. In this case all the characters between the starting comment characters and

end comment characters, are treated as comments and ignored by the C compiler.

� Line Comment

A line comment begins with // and comments out all characters to the end of the line, for example
// this is a line comment

98

HT-IDE3000 User�s Guide

Identifiers

The name of an identifier contains a sequence of letters, digits, and under scores with the follow-

ing rules:

� The first character must not be a digit

� Only the first 31 characters are significant

� Upper case and lower case letters are different

� Reserved words cannot be used

Reserved Words

The following are the reserved words supported by the Holtek C compiler. They must be in lower

case.

auto bit break case char
const continue default do else
enum extern for goto if
int long return short signed
static struct switch typedef union
unsigned void volatile while

The reserved words double, float and register are not supported by the Holtek C compiler.

Data Types

Data Types and Sizes

Four basic data types are supported by the Holtek C compiler,

bit a single bit
char a single byte holding one character
int an integer occupying one byte
void an empty set of values, used as the type returned by functions that generate no

value

The following qualifiers are allowed

Qualifier Applicable Data Type Use

const any place the data in a ROM space

long int create a 16-bit integer

short int create an 8-bit integer

signed char, int create a signed variable

unsigned char, int create an unsigned variable

Chapter 10 Holtek C Language

99

The following are the data types, sizes and ranges.

Data Type Size (bits) Range

bit 1 0,1

char 8 �128~127

unsigned char 8 0~255

int 8 �128~127

unsigned 8 0~255

short int 8 �128~127

unsigned short int 8 0~255

long 16 �32768~32767

unsigned long 16 0~65535

Declaration

Variables must be declared before being used as this defines the data type and the size of the vari-

able. The syntax of variable declaration is:

data_type variable_name [,variable_name...];

where data_type is a valid data type and variable_name is the name of the variable. The vari-

ables declared in a function are private (or local) to that function and other functions cannot access

these variables directly. The local variables in a function exist and are valid only when this function

is called, and are non-valid when exiting from the function. If the variable is declared outside of all

functions, then it is global to all functions.

The qualifier const can be applied to a declaration of any variable, to specify that the value of the

variable will not be changed. The variables declared with const are placed within the ROM space.

The const qualifier can be used in array variables. A const variable must be initialized upon decla-

ration, followed by an equal sign and an expression. Other variables cannot be initialized when de-

clared.

A variable can be declared in a specified RAM address by using the @ character; the syntax is:

data_type variable_name @ memory_location;

The memory_location specifies the address variable located. To allocate a variable above the

RAM bank 0 in the multiple RAM banks MCU, you might specify the bank no. in the high byte of

memory_location. You should check the data sheet of the Holtek MCUs to get the information

of the available RAM space.

For example:

int v1 @ 0�40; // declare v1 in the RAM bank 0 offset 0�40

int v2 @ 0�160; // declare v2 in the RAM bank 1 offset 0�60

100

HT-IDE3000 User�s Guide

Also, an array can be declared in a specified location:

int port[8] @ 0�20; // array port takes memory location

// 0�20 through 0�27

All variables implemented by the Holtek C compiler are static unless they are declared as external

variables. Note that both static and external variables will not be initialized to zero by default.

Note Declaring a variable as unsigned type will get more efficient code than as signed.

Constants

A constant is any literal number, single character or character string.

Integer Constants

An integer constant is evaluated as int type, a long constant is terminated with l or L. Unsigned con-

stants are terminated with a u or U, the suffix ul or UL indicates unsigned long. The value of an inte-

ger constant can be specified with the following forms:

Binary constant: preceding the number by 0b or 0B

Octal constant: preceding the number by 0 (zero)

Hexadecimal constant: preceding the number by 0x or 0X

Others not included above are decimal

Character Constants

A character constant is an integer, which is denoted by a single character enclosed by single

quotes. The value of a character constant is the numeric value of the character in the machine�s

character set. ANSI C escape sequences are treated as a single character constant.

Escape Character Description Hex Value

\a
\b
\f
\n
\r
\t
\v
\\
\?

\�

\�

alert (bell) character
backspace character
form feed character
new line character
carriage return character
horizontal tab character
vertical tab character
backslash
question mark character
single quote (apostrophe)
double quote character

07
08
0C
0A
0D
09
0B
5C
3F
27
22

String Constants

String constants are represented by zero or more characters (including the ANSI C escape se-

quences) enclosed in double quotes. A string constant is an array of characters and has an implied

null (zero) value after the last character. Hence, the total required storage is one more than the

number of the characters within the double quotes.

Chapter 10 Holtek C Language

101

Enumeration Constants

Another method for naming integer constants is called enumeration. For example:

enum {PORTA, PORTB, PORTC} ;

defines three integer constants called enumerators and assigns values to them.

The enumeration constants have type int (-128~127).

An explicit integer value might be associated with an enumeration constants. For example,
enum {BIG=10, SMALL=20};

The first enumeration constant has the value 0 if no explicit value is specified.

Subsequent enumeration constants without explicit associations receive an integer value one

greater than the value associated with the previous enumeration constant.

An enumeration can be named. For example:

enum boolean {NO, YES};

The first name (NO) in an enum statement has the value 0, the next has the value 1.

Operators

An expression is a sequence of operators and operands that specifies a computation. An expres-

sion follows the rules of algebra, may result in a value and may cause side effects. The order of

evaluation of subexpressions is determined by the precedence and grouping of the operators. The

usual mathematical rules for associativity and commutativity of operators may be applied only

where the operators are really associative and commutative. The different types of operators are

discussed in the following.

Arithmetic Operators

There are five arithmetic operators,

+ addition
� subtraction
* multiplication
/ division
% modulus (the remainder of division, always positive or zero)

The modulus operator %, can only be used with integral data types.

Relational Operators

The relational operators compare two values and return either a TRUE or FALSE result based on

the comparison.

> greater than
>= greater than or equal to
< less than
<= less than or equal to

102

HT-IDE3000 User�s Guide

Equality Operators

The equality operators are exactly analogous to the relational operators

= = equal to
!= not equal to

Logical Operators

The logical operators support the logical operations AND, OR and NOT. They create a TRUE or

FALSE value. Expressions connected by && and || are evaluated from left to right. The evaluation

stops as soon as the result is known. The numeric value of a relational or logical expression is 1 if

the relation is true, and 0 otherwise. The unary negation operator ! converts a non-zero operand

into 0 and a zero operand into 1.

&& logical AND
|| logical OR
! logical NOT

Bitwise Operators

There are six operators for manipulating bit-by-bit operations. The shift operators >> and << per-

form the right and left shifts of the left operand by the number of bit positions given by the right oper-

and, which must be positive. The unary ~ yields the one�s complement of an integer, converts

every 1-bit to a 0-bit and vice versa.

& bitwise AND
| bitwise OR
^ bitwise XOR
~ one�s complement
>> right shift
<< left shift

Assignment Operators

There are a total of 10 assignment operators for expression statements. For simple assignment,

the equal sign is used with the value of the expression replacing the variable, in the left operand.

This also provides a shortcut for modifying a variable by performing an operation on itself.

<var> + = <expr> add the value of <expr> to <var>
<var> - = <expr> subtract the value of <expr> from <var>
<var> * = <expr> multiply <var> by the value of <expr>
<var> / = <expr> divide <var> by the value of <expr>
<var> % = <expr> modulus, remainder when<var>is divided by <expr>
<var> & = <expr> bitwise AND <var> with the value of <expr>
<var> | = <expr> bitwise OR <var> with the value of <expr>
<var> 	 = <expr> bitwise XOR <var> with the value of <expr>
<var> >> = <expr> right shift <var> by <expr> positions
<var> << = <expr> left shift <var> by <expr> positions

Chapter 10 Holtek C Language

103

Increment and Decrement Operators

The increment and decrement operators can be used in a statement by themselves, or can be em-

bedded within a statement with other operators. The position of the operator indicates whether the

increment or decrement is to be performed before (prefix operators) or after (postfix operators) the

evaluation of the statement it is embedded within.

++ <var> pre-increment
<var> ++ post-increment
��<var> pre-decrement
<var>�� post-decrement

Conditional Operators

The conditional operator ?: is a shortcut for executing a statement between two selectable state-

ments according to the result of the expression.

<expr> ? <statement1> : <statement2>

If <expr> evaluates to a nonzero value, <statement1> is executed. Otherwise, <satement2> is
executed.

Comma Operator

A pair of expressions separated by a comma is evaluated from left-to-right and the value of the left

expression is discarded. All side effects of the left expression are performed before the evaluation

of the right expression. The type and value of the result are the type and value of the right operand.

For example,

f(a, (t=3, t+2), c) ;

has three arguments, the second of which has the value 5.

Precedence and Associativity of Operators

The following table lists the precedence and associativity of operators. The precedence is from the

highest to the lowest. Each box holds operators with the same precedence. Unary and assign-

ment operators are right associative, all others are left associative.

Operators Description Associativity

[]
()

�>
.
sizeof

subscription
parenthesis
structure pointer
structure member
size of type

left to right

104

HT-IDE3000 User�s Guide

Operators Description Associativity

++

��

~
!

�

+
&
*

increment
decrement
complement
not
unary minus
unary plus
address of
dereference

right to left

*
/
%

multiply
divide
modulus (remainder)

left to right

+

�

add (binary)
subtract (binary)

left to right

<<
>>

shift left
shift right

left to right

<
<=
>
>=

less than
less than or equal to
greater than
greater than or equal to

left to right

==
!=
&

	

|
&&
||
?:

equal
not equal
bitwise AND
bitwise XOR (exclusive OR)
bitwise OR
logical AND
logical OR
conditional expression

left to right

=
*=
/=
%=
+=

�=
<<=
>>=
&=
|=

	=

simple assignment
multiply and assign
divide and assign
modulus and assign
add and assign
subtract and assign
left shift and assign
right shift and assign
bitwise AND and assign
bitwise OR and assign
bitwise XOR and assign

right to left

, comma left to right

Type Conversions

The general rule for type conversion is to convert a �narrower� operand into a �wider� one without

losing information, such as converting an integer into a long integer. The conversion from char to

long is sign extension. Explicit type conversion can be forced in any expression, with a unary oper-

ator called a cast. In the example:

(type-name) expression

the expression is converted to the named type.

Chapter 10 Holtek C Language

105

Program Control Flow

The statements in this section are used to control the flow of execution in a program. The use of re-

lational and logical operators with these control statements and how to execute loops are also de-

scribed.

� if-else statement

� Syntax

if (expression)

statement1;

[else

statement2;

]

� Description

The if-else statement is a conditional statement. The block of statements executed depends

on the result of the condition. If the result of the condition is nonzero, the block of its associated

statements is executed. Otherwise, the block of statements associated with the else statement

is executed if the else block exists. Note that the else statement and its block of statements

may not exist as it is optional.

� Example
if (word_count > 80)
{

word_count=1;
line++;

}
else

word_count++;

� for statement

� Syntax
for(initial-expression; condition-expression;
update-expression)statement;

� Description

The initial-expression is executed first and only once. It is used to assign an initial value

to a loop counter variable. This loop counter variable must be declared before the for loop.

The condition-expression is evaluated prior to each execution of the loop. If the condi-

tion-expression is evaluated to be nonzero, the statement in the loop is executed. Other-

wise, the loop exits and the first statement encountered after the loop is executed next. The

update-expression executes after the statement of the loop.

The for statement is used to execute a statement or block of statements repeatedly.

� Example

for (i=0;i<10;i++)

a[i]=b[i]; // copy elements from an array to another array

106

HT-IDE3000 User�s Guide

� while statement

� Syntax

while (condition-expression)

statement;

� Description

The while statement is another kind of loop. When the condition-expression is nonzero,

the while loop executes the statement. The condition-expression is checked prior to

each execution of the statement.

� Example
i=0;
while (b[i] !=0)
{

a[i]=b[i];
i++;

}

� do-while statement

� Syntax

do

statement;

while (condition-expression);

� Description

The do-while statement is another kind of while loop. The statement is always executed be-

fore the condition-expression is evaluated. Hence, the statement executes at least

once, then checks the condition-expression.

� Example
i=0;
do
{

a[i]=b[i];
i++;

}while (i<10);

� break and continue statement

� Syntax

break;

continue;

� Description

The break statement is used to force an immediate exit from while, for, do-while loops

and switch. The break statement bypasses normal termination and returns control to the pre-

vious nesting level if a break occurs within a nested loop.

The continue statement orders the program to skip to the end of the loop and begins the next iter-

ation of the loop. In the while and do-while loops, the continue statement forces the condi-

tion-expression to be executed immediately. In the for loop, control passes to the

update-expression.

Chapter 10 Holtek C Language

107

� Example
char a[10],b[10],i,j;
for (i=j=0;i<10;i++)// copy data from b[] to a[],skip blanks
{

if (b[i]==0) break;

if (b[i]==0�20)continue;
a[j++]=b[i];

}

� goto statement and label

� Syntax

goto label;

� Description

A label has the same form as a variable name, but followed by a colon. The scope of a label is

the entire function.

� Example

See the switch statement example

� switch statement

� Syntax
switch (variable)
{

case constant1:
statement1;
break;

case constant2:
statement2;
goto Label1;

case constant3:
statement3;
break;

default:
statement;

Labell: statement4;
break;

}

� Description

The switch variable is tested against a list of constants. When a match is found, the state-

ments with that constant are executed until a break statement is encountered. If no break

statement exists, execution flows through the rest of the statements until the end of the switch

routine. If no match is found, the statements associated with the default case are executed.

The default case is optional.

The if-else statement can be used to select between a pair of alternatives, but becomes

cumbersome when many alternatives exist. The switch statement is an alternative multi-way

decision method that evaluates if an expression matches one of many alternatives, and

branches accordingly. It is equivalent to multiple if-else statements.

The switch statement�s limitation is that the switch variable must be an integral data type,

and can only be compared against constant values.

108

HT-IDE3000 User�s Guide

� Example
for (i=j=0;i<10;i++)
{

switch (b[i])
{

case 0: goto outloop;

case 0�20:break;
default:

a[j]=b[i];
j++;
break;

}
}
outloop:

Functions

In the C language, all executable statements must reside within a function. Before a function is

used or called, it must be either defined or declared, otherwise a warning message will be issued

by the C compiler. Two syntax forms, namely classic and modern, are supported for function decla-

ration and definition. Unlike the variable, there in no need and no way to assign a function in a spe-

cific bank for the MCU having multi-bank of ROM. The Cross Linker will locate functions into a

appropriate ROM bank.

Classic Form

return-type function-name (arg1, arg2,...)

var-type arg1;

var-type arg2;

Modern Form

return-type function-name (var-type arg1, var-type arg2, ...)

In both forms, the return-type is the data type of the function returned value. If functions do not

return values, then return-type must be declared as void. The function-name is the name

of this function and is equivalent to a global variable of all other functions. The arguments, arg1,

arg2, etc, are the variables to be used in this function. Their data type must be specified. These

variables are defined as formal parameters to receive values when the function is called.

� Function Declaration

// classic form
return-type function-name (arg1, arg2, ...);

// modern form
return-type function-name (var-type arg1, var-type arg2,...);

Chapter 10 Holtek C Language

109

� Function Definition

// classic form
return-type function-name (arg1, arg2, ...)
var-type arg1;
var-type arg2;
{

statements;
}
// modern form
return-type function-name (var-type arg1, var-type arg2, ...)
{

statements;
}

� Passing Arguments to Functions

There are two methods for passing arguments to functions.

� Pass by value.

This method copies the argument values to the corresponding formal parameters of the func-

tion. Any changes to the formal parameters will not affect the original values of the correspond-

ing variables in the calling routine.

� Pass by reference.

In this method, the address of the argument is copied to the formal parameters of the function.

Within the function, the formal parameters can access the actual variables within the calling rou-

tine. Hence, changes to the formal parameters can be made to the variables.

� Returning Values From Functions

By using the return statement, a function can return a value to the calling routine. The returned

value must be of a data type specified within the function definition. If return-type is void, it

means no return value, therefore no value should be in the return statement. When a return

statement is encountered, the function returns immediately to the calling routine. Any statements

after the return statement are not executed.

Pointers and Arrays

Pointers

A pointer is a variable that contains the address of another variable. For example, if a pointer vari-

able, namely varpoint, contains the address of a variable var, then varpoint points to var. The syn-

tax to declare a pointer variable is

data-type *var_name;

The data-type of a pointer is a valid C data type. It specifies the type of variable that var_name

points to. The asterisk (*) prior to var_name tells the C compiler that var_name is a pointer vari-

able. Two special operators, the asterisk (*) and ampersand (&), are associated with pointers. The

address of a variable can be accessed by preceding this variable with the & operator. The * opera-

tor returns the value stored at the address pointed to by the variable.

In addition to * and &, there are four operators that can be applied to the pointer variables: +, ++, -,

–. Only integer quantities may be added or subtracted from pointer variables. An important point to

remember when performing pointer arithmetic is that the value of the pointer is adjusted according

to the size of the data type it is pointing to.

110

HT-IDE3000 User�s Guide

Arrays

An array is a list of variables that are of the same type and which can be referenced by the same

name. An individual variable in the array is called an array element. The first element of an array is

defined to be at an index of 0 and the last element is defined to be at an index of the total elements

minus one. C stores one-dimensional arrays in contiguous memory locations. The first element is

at the lowest address. C does not perform boundary checking for arrays.

Assignment from an entire array to another array is not allowed. To copy, each individual element

must be copied one by one from the first array into the second array. Any array element can be

used anywhere a variable or a constant can be used.

Structures and Unions

� Structures

� Syntax
struct struct-name

{
data-type member1;
data-type member2;
...
data-type membern;

} [variable-list];

� Description

A structure is a collection of one or more variables, possibly of different types, grouped together

under a single name for convenient handling. Structures may be copied and assigned to,

passed to functions and returned by functions. C allows bit fields. Nested structures are also al-

lowed.

The reserved word struct indicates a structure is to be defined while struct-name is the

name of the structure. Within the structure, data-type is one of the valid data types. Members

within the structure may have different data types. The variable-list declares variables of

the type struct-name. Each item in the structure is referred to as a member.

After defining a structure, other variables of the same type are declared with the following syn-

tax:

struct struct-name variable-list;

To access a member of a structure, specify the name of the variable and the name of member

separated by a period. The syntax is

variable.member1

where variable is the variable of structure type and member1 is a member of the structure. A

structure member can have a data type with a previously defined structure. This is referred to as

a nested structure.

� Example
struct person_id
{

char id_num[6];
char name[3];
unsigned long birth_date;

} mark;

Chapter 10 Holtek C Language

111

� Unions

union union-name

{
data-type member1;
data-type member2;
...
data-type memberm;

} [variable-list];

� Description

Unions are a group of variables of differing types that share the same memory space. A union is

similar to a structure, but its memory usage is very different. In a structure, all the members are

arranged sequentially. In a union, all members begin at the same address, making the size of

the union equals to the size of the largest member. Accessing the members of a union is the

same as accessing the members of a structure.

union is a reserved word and union-name is the name of the union. The variable-list,

which is optional, contains the variables that have the same data type as union-name.

� Example
union common_area
{

char name[3];
int id;
long date;

} cdata;

Preprocessor Directives

The preprocessor directives give general instructions on how to compile the source code. It is a

simple macro processor that conceptually processes the source codes of a C program before the

compiler properly parses the source program. In general, the preprocessor directives do not trans-

late directly into executable code. It removes preprocessor command lines from the source file

and expands macro calls that occur within the source text and adds additional information, such

as the #line command, on the source file. The preprocessor directives begin with the # symbol. A

line that begins with a # is treated as a preprocessor command, and is followed by the name of a

command. The following are the preprocessor directives:

� Macro Substitution: #define

� Syntax
#define name replaced-text

#define name [(parameter-list)] replaced-text

� Description

The #define directive defines string constants that are substituted into a source line before the

source line is evaluated. The main purpose is to improve source code readability and maintain-

ability. If the replaced-text requires more than one line, the backslash (\) is used to indicate

multiple lines.

112

HT-IDE3000 User�s Guide

� Example

#define TOTAL_COUNT 40

#define USERNAME �Henry�

#define MAX(a,b) (((a)>(b))?(a):(b))
#define SWAP(a,b) {int tmp;\

tmp=b;\
b=a;\
a=tmp;}

� #error

� Syntax

#error �message-string�

� Description

The #error directive generates a user-defined diagnostic message, message-string.

� Example

#if TOTAL_COUNT > 100

#error �Too many count.�

#endif

� Conditional Compilation: #if #else #endif

� Syntax

#if expression

source codes1

[#else
source codes2]

#endif

� Description

The #if and #endif directives pairs are used for conditionally compiling code depending upon

the evaluation of the expression. The #elsewhich is optional provides an alternative compi-

lation method. If the expression is nonzero, then the source codes1 will be compiled. Other-

wise, the source codes2, if it exists, will be compiled.

� Example

#define MODE 2
#if MODE > 0

#define DISP_MODE MODE
#else

#define DISP_MODE 7
#endif

� Conditional Compilation: #ifdef

� Syntax

#ifdef symbol

source codes1

[#else
source codes2]

#endif

� Description

The #ifdef directive is similar to the #if directive, except that instead of evaluating the ex-

pression, it checks if the specified symbol has been defined or not. The #elsewhich is optional

provides alternative compilation. If the symbol is defined, then the source codes1 will be

compiled. Otherwise, the source codes2, if it exists, will be compiled.

Chapter 10 Holtek C Language

113

� Example
#ifdef DEBUG_MODE
#define TOTLA_COUNT 100
#endif

� Conditional Compilation: #ifndef

� Syntax
#ifndef symbol

source codes1

[#else
source codes2]

#endif

� Description

The #ifndef directive is similar to the #ifdef directive. The #else which is optional pro-

vides alternative compilation. If the symbol has not been defined, then the source codes1

will be compiled. Otherwise, the source codes2, if it exists, will be compiled.

� Example
#ifndef DEBUG_MODE
#define TOTAL_COUNT 50
#endif

� Conditional Compilation: #elif

� Syntax
#if expression1

source codes1

#elif expression2

source codes2

[#else
source codes3]

#endif

� Description

The #elif directive is accompanied with the #if directive. It provides other compilation con-

ditions in addition to the usual two. If the expression1 is nonzero, then the source codes1

will be compiled. If expression1 is zero, then expression2 is checked to see if it is nonzero.

If so then the source codes2 will be compiled. Otherwise, the source codes3, if it exists,

will be compiled.

� Example
#if MODE==1
#define DISP_MODE 1
#elif MODE==2
#define DISP_MODE 7
#endif

� Conditional Compilation: defined

� Syntax
#if defined symbol

source codes1

[#else
source codes2]

#endif

114

HT-IDE3000 User�s Guide

� Description

The unary operator defined can be used within the directive #if or #elif. A control line of

the form

#ifdef symbol

is equivalent to

#if defined symbol

A line of the form

#ifndef symbol

is equivalent to

#if !defined symbol

� Example
#if defined DEBUG_MODE
#define TOTAL_COUNT 50
#endif

� Conditional Compilation: #undef

� Syntax
#undef symbol

� Description

The #undef directive causes the symbol�s preprocessor definition to be erased. Once defined,

a preprocessor symbol remains defined and in scope until the end of the compilation unit or until

it is undefined using an #undef directive.

� Example
#define TOTAL_COUNT 100
...
#undef TOTAL_COUNT
#define TOTAL_COUNT 50

� File Inclusion: #include

� Syntax
#include <file-name>
or

#include �file-name�

� Description

#include inserts the entire text from another file at this point into the source file. When

<file-name> is used, the compiler looks for the file in the directory specified by the environ-

ment variable INCLUDE. If the INCLUDE is not defined, the C compiler looks for the file in the

path. When �file-name� is used, the C compiler looks for the file as specified. If no directory is

specified, the current directory is checked.

� Example
#include <ht48c10-1.h>

#include �my.h�

Chapter 10 Holtek C Language

115

Holtek C Language Extensions and Restrictions

Holtek C language provides a number of extensions for ANSI C. Most of these provide support for

elements of the Holtek microcontroller architecture. Due to the limited resource of the

microcontroller, there are also some restrictions you should take care.

Keywords

The following is a list of the keywords available in Holtek C.

@ bit norambank rambank0 vector

The following keywords and qualifiers are not supported:

double float register

Memory Bank

For variables located in high banks (not bank 0), they should be accessed through indirect ad-

dressing mode. To achieve the efficiencies, you might locate the most frequently used variables in

Ram bank0. The Holtek C provides you a rambank0 keyword to declare variables in bank0.

� Syntax
#pragma rambank0
//data declarations
#pragma norambank

� Description

The rambank0 keyword directs the Holtek C to declare subsequent variables to be located in

Ram bank0 until the norambank keyword meets. For the single Ram bank MCU, these two

keywords will be ignored.

� Example

#pragma rambank0
unsigned int i,j; //i, j located in Ram bank0
long len; //len located in Ram bank0

#pragma norambank

unsigned int iflag; //iflag�s bank number is unknown

#pragma rambank0
int tmp; //tmp located in Ram bank0
. . .
i=1; //MOV A, 1

//MOV _i, A

iflag=1 //MOV A,BANK _iflag
//MOV[04H], A
//MOV A,OFFSET _iflag
//MOV[03H],A
//MOV A,1
//MOV[02H],A

116

HT-IDE3000 User�s Guide

Bit Data Type

Holtek C provides you with a bit data type which may be used for variable declarations, argument

lists, and function return values. A bit variable is declared just as other C data types are declared.

For the multiple ram/rom bank MCU, you should declare the bit variables in the ram bank 0

(#pragma rambank0).

� Example
#pragma rambank0
bit test_flag; //bit var should locate in rambank0

bit testfunc(//bit function
bit f1, //bit arguments
bit f2)
{

. . .
return 0; //return bit value

}

� Restriction

� To get the benefit of the bit data type, it is not recommended to declare a bit array variable.

� There is no bit pointer.

In Line Assembly

� Syntax

#asm

[label:] opcode [operands]

. . .

#endasm

� Description

The #asm and #endasm are the inline assembly preprocessor directives. The #asm directive

inserts Holtek�s assembly instruction(s) after this directive (or within the directive #asm and di-

rective #endasm) into the output file directly.

� Example
// convert low nibble value in the accumulator to ASCII
#asm
; this is an inline assembly comment
and a, 0fh
sub a, 09h
sz c
add a, 40h-30h-9
add a, 30h+9
#endasm

Interrupt

The Holtek C language provides a means for implementing interrupt service routines (ISRs)

through the preprocessor directive #pragma. The directive #pragma vector is used to declare

the name and address of the ISRs. Any function declared later with the same name as defined

with #pragma vector is the ISR for the vector. The return statement within the ISR generates a

RETI instruction.

Chapter 10 Holtek C Language

117

� Syntax

#pragma vector symbol @ address

� Description

symbol is the name of the interrupt service routine.

address is the interrupt address. The reset vector (address 0) is reserved for main function.

� Restriction

There are four restrictions you should keep in mind when writing an ISR.

� There is no parameter for ISR; the return type is void.

� The ISR is not reentrant. Do not enable the interrupt in the ISR.

� Do not call the ISR explicitly in your programs. It should always be invoked implicitly by the

system while the interrupt coming.

� Do not call the user defined function written in C within the ISR. It is safe to use the system

calls. If you want to call a function in the ISR, then write it in assembly. It is safety to call the

built-in function in the ISR.

� Example
#pragma vector timer0 @ 0x8
extern void ASM_FUNCTION();
void setbusy(){
. . .
}

void timer0(){
. . .
ASM_FUNCTION(); //The ASM_FUNCTION should be

//an assembly function

_delay(3) //Ok; built-in function

setbusy(); //Wrong! do not call C function
}

Variables

The operator �@� can be used to specify the address of variable in the Data Memory.

� Syntax
data_type varaible_name @ memory_location

� Description

The memory_location specifies the address of the variable located. For a single bank of

RAM/ROM, the memory_location is one byte. For multiple banks of RAM/ROM, the mem-

ory_location is two bytes, the high byte is the bank number. The data sheet of the Holtek

microcontrollers should be referred to for information on the available RAM space.

� Example
int v1 @ 0x5B; //declare v1 in the RAM bank 0 offset 0x5B
int v2 @ 0x2F0; //declare v2 in the RAM bank 2 offset 0xF0

118

HT-IDE3000 User�s Guide

Static Variables

Holtek C supports file scope static variables while local static variables does not.

� Example
static i; //file scope static
void f1(){

i=1; //OK
}
void f2(){

static int j; //Wrong
//local static variable is not supported

. . .
}

Constants

Holtek C supports binary constants. Any string that begins with 0b or 0B will be treated as a binary

constant.

� Example

0b101= 5
0b1110= 14

Functions

Avoid using reentrant and recursive code.

Arrays

An array should be located in a contiguous block of memory and must not have more than 256 ele-

ments. To speak precisely, the size of an array is limited to the size of the RAM bank of the Holtek

MCU you used.

Constant Variables

Constant variables must be declared in global scope and be initialized when declared. A constant

variable could not be declared as external.

A constant array would specify the array size otherwise an error generated.

const char carray[]= {1,2,3}; //wrong
const char carray[3]= {1,2,3}; //right

Chapter 10 Holtek C Language

119

A constant string must be used in the C file with the main function.

//test.c
void f1(char *s);
void f2(){

f1(�abcd�); //�abcd� is a constant string
// If there is no main() function declared
// in test.c then the Holtek C compiler would
// generate an error.

. . .
}
. . .
void main(){

. . .
}

Pointer

Pointer can not apply to constant and bit variables

Initial Value

Global variables cannot be initialized when declared. Local variables do not have this constraint.

Constant variables must be initialized when declared.

� Example
unsigned int i1= 0; //illegal declaration; can not be

//initialized
unsigned int i2;
const unsigned int i3; //illegal declaration; should be

//initialized
const unsigned int i4=5;
const char a1[5]; //illegal declaration; should be

//initialized

const char a2[5]={0�1,0�2,0�3,0�4,0�5};

const char a3[4]=�abc�; //={�a�, �b�, �c�,0}

const char a4[3]=�abc�; //={�a�, �b�, �c�}

const char a5[2]=�abc�; //array size mismatched

Multiply/Divide/Modulus

The multiply, divide and modulus (�*�, �/�, �%�) operators are implemented by system calls.

Built-in Functions

� WDT & halt & nop

C system call Assembly code

void _clrwdt() CLR WDT

void _clrwdt1() CLR WDT1

void _clrwdt2() CLR WDT2

void _halt() HALT

void _nop() NOP

120

HT-IDE3000 User�s Guide

� Rotate right/left
void _rr(int*); //rotate 8 bits data right
void _rrc(int*); //rotate 8 bits data right through carry
void _lrr(long*); //rotate 16 bits data right
void _lrrc(long*); //rotate 16 bits data right through carry
void _rl(int*); //rotate 8 bits data left
void _rlc(int*); //rotate 8 bits data left through carry
void _lrl(long*); //rotate 16 bits data left
void _lrlc(long*); //rotate 16 bits data left through carry

� Swap nibble
void _swap(int *); //swap nibbles of 8 bits data

� Delay cycle
void _delay(unsigned long); //delay n instruction cycle

The _delay function forces the MCU to execute the specified cycle count. A value of zero causes

an endless loop. The parameter of the _delay could be constant value only. It does not accept a

variable.

� Example 1
//assume the watch dog timer is enabled
//and is using one instruction
void error(){

_delay(0); //infinite loop, same as while(1);
}
void dotest(){

unsigned int ui;
ui = 0x1;
_rr(&ui); //rotate right
if (ui != (unsigned int)0x80) error();
ui = 0xab;
_swap(&ui);
if (ui != (unsigned int)0xba) error();

}
void main(){

unsigned int i;
for(i= 0; i<100; i++){

_clrwdt();
_delay(10); //delay 10 instruction cycle
dotest();

}
}

� Example 2
//assume the watch dog timer is enable
//and using two instructions
void do test(){
...
}
void main(){

unsigned int i;
for(i= 0; i<100; i++){

_clrwdt1();
_clrwdt2();
dotest();

}
}

Chapter 10 Holtek C Language

121

Stack

Because the Holtek microcontrollers have limited stack depth, it is necessary to consider the func-

tion call depth to avoid stack overflow. The multiply, divide, modulus, and const variables are imple-

mented by using �call� instructions, each taking one stack level.

Operator/System Function Stack Requirements

main () 0

_clrwdt() 0

_clrwdt1() 0

_clrwdt2() 0

_halt() 0

_nop() 0

_rr(int*) 0

_rrc(Int*) 0

_lrr(long*) 0

_lrrc(long*) 0

_rl(int*) 0

_rlc(int*) 0

_lrl(long*) 0

_lrlc(long*) 0

_swap(int*) 0

_delay(unsigned long) 1

* 1

/ 1

% 1

constant array 1

122

HT-IDE3000 User�s Guide

C h a p t e r 1 1

Mixed Language

The Holtek Cross Tools (Cross Assembler, Cross Linker, Library and Holtek C compiler) provide

methods to program with mixed languages, Holtek assembly language and C language. That

means a project can consist of source files programming with assembly language and C lan-

guage. However, the programmer should conform to some rules when programming with mixed

languages. In order to facilitate the program coding, this chapter describes the conventions that

Holtek C compiler compiles a C program into the assembly language, how to define the subroutine

names, etc. The following are the topics included:

� Little endian

� Naming rule of functions and parameters

� Parameter passing

� Return value

� Preserving registers

� Calling assembly function from C program

� Calling C function from assembly program

� Programming ISR with assembly language

Little Endian

The data format adopted by the Holtek C compiler is Little-Endian, i.e. the low byte of a WORD is

the WORD�s least significant byte, and the high byte is the most significant. In memory allocation,

the low byte occupies the lower address and high byte occupies the higher address.

For example

long var @ 0x40;
var = 0x1234;

Then the address 0x40 contains 0x34, and the address 0x41 contains 0x12.

Chapter 11 Mixed Language

123

11

Naming Rule of Functions and Parameters

The Holtek Cross Assembler is non case-sensitive when handling symbol names. Actually, all sym-

bol names are translated into uppercase no matter what the original form is. But the Holtek C lan-

guage is case-sensitive. Due to the difference of these two languages, the variables and functions

which are defined in C source files and referred by the assembly program should be defined as up-

percase.

The names of the global variables and functions in C language are prefixed with an underscore

when the C compiler translates them into assembly language. For local variables, if a local vari-

able is declared without being referenced, the C compiler won�t reserve memory space for it. By

checking the assembly file generated by the Holtek C compiler, the programmer can find out what

the translated name of the C local variable is.

Global Variable

A global variable in a C file is translated into the same case letters with a prefixed underscore.

For example

TimerCt
TMP

will be translated into

_TimerCt
_TMP

Local Variable

If a local variable in a C function is not referenced by other programs, it will not be translated into as-

sembly language. Check the assembly file to find out what the result is.

void main(){

int i, j, k; ; k is not used

long m;

char c;

i = j = m = c = 2;

#asm

set CR3[1].2 ;set bit 10 of m, i.e. m |= 0x400

#endasm
}

124

HT-IDE3000 User�s Guide

The corresponding part of the assembly file looks like the following:

#line 2 �C:\Holtek IDE\SAMPLE\NAME.C�

LOCAL CR1 DB ? ; i
#pragma debug variable 2 CR1 i

#line 2 �C:\Holtek IDE\SAMPLE\NAME.C�

LOCAL CR2 DB ? ; j
#pragma debug variable 2 CR2 j

#line 3 �C:\Holtek IDE\SAMPLE\NAME.C�

LOCAL CR3 DB 2 DUP (?) ; m
#pragma debug variable 2 CR3 m

#line 4 �C:\Holtek IDE\SAMPLE\NAME.C�

LOCAL CR4 DB ? ; c
#pragma debug variable 2 CR4 c

The second and third line indicates that the i is translated into CR1 in the assembly file. By the

same way, j is translated into CR2, m is CR3 and c is CR4. The k is not referenced so it is not trans-

lated.

Note If local variables are added to or removed from or arranged the order, then the translated names

may be changed by the C compiler.

For the above sample code, if the microcontroller supports multiple RAM banks, then the instruc-

tion

set CR3[1].2

can execute correctly or not. The program will be corrupted if CR3 is allocated in a high bank. But

this phenomenon cannot happen, because the local variable is defined with a LOCAL directive in

the translated assembly file and instructs the Cross Assembler to allocate the variable in the RAM

bank 0. Hence it can execute correctly in the same way as a variable does in a single RAM bank.

Function

Like the global variable, a function in a C file is translated into the same case letters with a prefixed

underscore.

For example

GetKey
IsBusy

will be translated into

_GetKey
_IsBusy

Function Parameters

The names of the function parameters in a C file are translated into the function name following the

number of the parameters occurring, indexed from 0.

Chapter 11 Mixed Language

125

For example
GetKey(int row, long col)

row is translated into GetKey0

col is translated into GetKey1

Parameter Passing

Due to the microcontroller resource�s limitation, the Holtek C compiler passes parameters to a

function via the RAM space instead of the stack. The naming of the function parameters are the

function name appended with the number of the parameters occurring, indexed from 0. Like the lo-

cal variable, the function parameters are also allocated in RAM bank 0.

For example

void function (int a, int b)

Then the parameter a will be translated into function0, b will be function1.

For mixed languages, the data type of the function parameters should always be declared as

BYTE in assembly, if there are more than one byte, e.g. WORD (2 bytes), the programmer should

use the instruction �DB n DUP(?)� to declare it.

Return Value

The return value of a C function is located in the A register or in the RH system variable. If the size

of the return value is one byte (e.g. char, unsigned char, int, unsigned int, short, unsigned

short), then the value is stored in the A register. If it is two bytes (e.g. long, unsigned long,

pointer), then the high byte is stored in the RH and the low byte is stored in the A register.

Note The RH variable is located in RAM bank 0.

Preserving Registers

Except for the ISR, there is no need to preserve the registers when writing a function in assembly.

If users write an ISR in assembly language, then it is their responsibility to preserve the registers

used in the ISR.

Calling Assembly Function from C Program

This section describes the steps to call an assembly function from a C program. The steps are di-

vided into two parts, one is for the assembly files, the other is for the C files.

� In Assembly File

� Declare RH as an external byte variable if the return value is two bytes.

� Declare the function name with prefixed underscored as public.

� Declare the function parameters, if they exist, in the RAM bank 0 as public. Beware of the nam-

ing of parameters.

� Put the return values into A or RH.

126

HT-IDE3000 User�s Guide

� In C File

� Declare the prototype of the external function name with uppercase letters

� Call it

The following function is defined in assembly file and called by a C program.

long KEYIN(int row, long col);

In assembly file
;;Declare external byte variable RH
EXTERN RH:BYTE

;;Declare function name & parameters as public
PUBLIC _KEYIN, KEYIN0, KEYIN1

;;Declare parameters
RAMBANK0 KEYINDATA ;suppose the MCU has multiple ram banks

KEYINDATA .section �data�

KEYIN0 DB? ;row

KEYIN1 DB 2 DUP (?) ;col, don�t use �KEYIN1 DW ?�

;function body

CODE .section �code�

_KEYIN:
. . .
MOV A, KEYIN0 ;retrieve row
. . .
MOV A, KEYIN1 ;retrieve low byte of col
. . .
MOV A, KEYIN1[1] ;retrieve high byte of col
. . .
;; Put the return values into A and RH
MOV A,0A0H ;suppose the return value is 0xA010
MOV RH,A ; store high byte 0xA0 to RH
MOV A,10H ; store low byte 0x10 to A
RET

In C file
// Declare the external function name with uppercase
extern long KEYIN(int row, long col);
long rc;
. . .
// Call it
rc = KEYIN(10, 20L);

Calling a C Function from an Assembly Program

This section describes the steps to call a C function from an assembly program. For the microcon-

troller with multiple ROM banks, it is important to set the BP (bank pointer) before calling the func-

tion.

� In the C File

� Declare the function name with uppercase

Chapter 11 Mixed Language

127

� In the Assembly File

� Declare RH as an external byte variable if the return value is two bytes.

� Declare the external function name with prefixed underscore

� Declare the function parameters as external if they exist. Beware of the naming of parameters.

� Set function parameters if they exist

� Call C function

Call the C function directly if the microcontroller supports a single RAM/ROM bank.

Set BP to the bank of function first, then call the C function if the microcontroller supports multi-

ple RAM/ROM banks.

� Get return value from A or RH

The following function is defined in C language and called by the assembly program

long KEYIN(int row, long col);

and the microcontroller has single ROM bank.

// --

// In C file, function definition

// --

long KEYIN(int row, long col){

. . .

}

void main(){

. . .

}

;; --

;; In assembly file

;; --

;;Declare external byte variable RH
EXTERN RH:BYTE

;; Declare the external function name with prefixed
;; underscore
extern _KEYIN: near ;; underscore and function name

;; Declare the function parameters as external variables
extern KEYIN0:byte ; function parameter:row
extern KEYIN1:byte ; function parameter:col

; declare it as BYTE, although

; it�s 2 bytes

code_ki .section �code�

;; Set function parameters for calling KEYIN(0x10, 0x200L)
mov a,10H
mov KEYIN0,a ; put 10H to function parameter: row
mov a,2H
mov KEYIN1[1],a ; put 02H to high byte of parameter:col
clr KEYIN1 ; put 00H to low byte of parameter:col

128

HT-IDE3000 User�s Guide

;; Call C function
call _KEYIN
;; Get return value from A or RH
;; A register keeps low byte of return value
;; RH keeps high byte of return value

The following function is defined with C language and called by the assembly program

long KEYIN(int row, long col);

and the microcontroller supports multiple ROM banks.

// --

// In C file

// --

long KEYIN(int row, long col){

. . .

}

; ---

; In assembly file

; ---

;;Declare external byte variable RH
EXTERN RH:BYTE

;; Declare the external function name with prefixed
;; underscore
extern _KEYIN:near

;; Declare the function parameters as external variables
extern KEYIN0:byte ; parameter: row

extern KEYIN1:byte ; parameter: col, although it�s
; 2 bytes,
; only declare one BYTE

code_ki .section �code�

;;Set function parameters for calling KEYIN(0x10, 0x200L)
mov a,10
mov KEYIN0,a ; parameter: row
mov a ,2
mov KEYIN1[1],a ; high byte of the parameter: col
clr KEYIN1 ; low byte of the parameter: col

;; Call C function in multiple ROM banks
;; Set BP to the bank of function first

mov a, bank _KEYIN
mov bp , a ; change the bank number
call _KEYIN

;; Get return value from A or RH
;; A register keeps low byte of return value
;; RH keeps high byte of return value

Chapter 11 Mixed Language

129

Programming the ISR with Assembly Language

An ISR (Interrupt Service Routine) is invoked by a hardware interrupt. It should not be explicitly

called by user, hence it doesn�t have parameters to be passed nor return values. When an ISR is

written in assembly there is no correlation with other C files. It is only necessary to add the assem-

bly file into the project. Please refer to the assembly language user�s guide for more information

about ISR programming.

Do not call a C function from an ISR, no matter whether the ISR is written in assembly or C.

130

HT-IDE3000 User�s Guide

C h a p t e r 1 2

Cross Linker

What the Cross Linker Does

The Cross Linker creates task files from the object files generated by the Cross Assembler or the

C compiler. The Cross Linker combines both code and data in the object files and searches the

named libraries to resolve external references to routines and variables. It also locates the code

and data sections at the specified memory address or at the default address, if no explicit address

is specified. Finally, the Cross Linker copies both the program codes and other information to the

task file. It is this task file that is loaded by the Holtek IDE Holtek Integrated Development Environ-

ment, into the Holtek HT-ICE In-Circuit Emulator, for debugging. The libraries included by the

Cross Linker were generated by the Holtek library manager.

Cross Linker Options

The options specify and control the tasks performed by Cross Linker. In chapter 3, Option Menu,

Project command provides a dialog box, Cross Linker Options, to specify these options to the

Cross Linker. These options are:

Libraries

� Syntax

libfile1[,libfile2...]

This option informs the Cross Linker to search the specified library files if the input object files re-

fer to a procedure or variable which is not defined in any of the object files. If a module of a library

file contains the referred procedure or variable, then only this module, not the whole library file

will be included in the output task file. (refer to Chapter 13 Library Manager)

Section Address

� Syntax
section_name = address [,section_name = address]...

This option specifies the address of the sections; section_name is the name of the section that is

to be addressed. The section_name must be defined in at least one input object file, otherwise a

warning will occur. The address is the specified address whose format is xxxx in hexadecimal for-

mat.

Chapter 12 Cross Linker

131

12

Generate Map File

The check box of this option is to specify whether the map file is generated or not.

Map File

The map file lists the names and loads the addresses and lengths of all sections in a program as

well as listing the messages it encounters. The Cross Linker gives the address of the program en-

try point at the end of the map file. The map file also lists the names and loads addresses of all pub-

lic symbols. The names and file names of the external symbols or procedures are recorded in the

map file if no corresponding public symbol or procedure can be found. The contents of the map file

are as follows.

Holtek (R) Cross Linker Version 7.34
Copyright (C) HOLTEK Microelectronics INC. 2002-2003. All
rights reserved.
Input Object File: C:\SAMPLE\T2.OBJ
Input Object File: C:\SAMPLE\T1.OBJ
Start End Length Class Name
0000h 00F2h 00F3h CODE TEXT (C:\SAMPLE\T1.OBJ)
00F3h 0114h 0022h CODE SUB (C:\SAMPLE\T2.OBJ)
0000h 0063h 0064h DATA DAT (C:\SAMPLE\T1.OBJ)

Address Public by Name
001Ch BREAKL
00A4h CHKSTACK
0042h FAC_DB

Address Public by Value
001Ch BREAKL
0042h FAC_DB
00A4h CHKSTACK

HLINK: Program entry point at section code(address 0) of file
C:\SAMPLE\T1.OBJ

<EOF>

Cross Linker Task File and Debug File

One of the Cross Linker�s output files is the task file which consists of two parts, a task header and

binary code. The task header contains the Cross Linker version, the MCU name and the ROM

code size. The binary code part contains the program codes. The other Cross Linker output file is

the debug file which contains all information referred to by the Holtek IDE debugging program.

This information includes source file names, symbol names and line numbers as defined in the

source files. The Holtek IDE will refer to the symbolic debugging function information. This file

should not be deleted unless the debugging procedure is completed, otherwise the Holtek IDE will

be unable to support the symbolic debugging function.

132

HT-IDE3000 User�s Guide

P a r t I I I

Utilities

In addition to the previously discussed general purpose 8-bit MCU development tools, Holtek also

supplies several other utilities for its range of special purpose Voice and LCD MCU devices by sup-

plying all the necessary tools and step by step guide for relevant simulation of voice synthesis and

tone generator applications as well as the tools for real time hardware LCD panel simulation. This

part contains all the information needed to program and debug relevant applications quickly and ef-

ficiently.

Part III Utilities

133

134

HT-IDE3000 User�s Guide

C h a p t e r 1 3

Library Manager

What the Library Manager Does

The Library Manager provides functions to process the library files. The library files are utilized in

the creation of the output file by the Cross Linker. A library is a collection of one or more object mod-

ules which are assembled or compiled and ready for linking. It stores the modules that other pro-

grams may require for execution.

By using the Library Manager, library files can be created. Object files including common routines

may be added to the library files. Before creating these object files, the names of all common rou-

tines must be made public by using the assembly directive PUBLIC (refer to the chapter on Assem-

bly Language and Cross Assembler). The Cross Assembler generates the output object file

(.OBJ) while the Library Manager adds this object file into the specified library file. When the Cross

Linker has found unresolved names in a program during the linking process, it will search the li-

brary files for these unresolved names, and extracts a copy of the module containing that name. If

an unresolved name has been found in this library module, the module will be linked to the pro-

gram.

To Setup the Library Files

The Library Manager provides the following functions:

� Create new library files

� Add/Delete a program module to/from a library file

� Extract a program module from a library file, and create an object file

To select use the Tools Menu and the Library Manager command as shown in Fig 13-1. Fig 13-2

shows the dialogue box for processing the functions of the Library Manager.

Chapter 13 Library Manager

135

13

Create a New Library File

Press Open button, Fig 13-3 is displayed

Type in a new library file name and press the OK button, Fig 13-4 is displayed for confirmation. If

the Yes button is chosen, a new library file will be created but will not contain any program mod-

ules.

136

HT-IDE3000 User�s Guide

Fig 13-1

Fig 13-2

Add a Program Module into a Library File

Select an object module from the �Object in Directory� box, and press the [ADD] button to add this

object module into this library file.

Delete a Program Module from a Library File

Select an object module from the �Object In Library� box, and press the [Delete] button to delete

this object module from the library file.

Extract a Program Module from Library and Create An Object File

Select an object module from the �Object in Library� box, and press [ExTract] button. A file will

then be created with the same name and same content as the selected object module. It is dis-

played on the �Object in Directory� box.

Object Module Information

Press the Open button, Fig 13-3 is displayed. Select a library file from the box below the File Name

box, press OK button. From Fig 13-2, all the object modules of the selected library file are listed in

the �Object in Library� box. The following information about each object module is also listed in the

�Objects� Information� box.

Chapter 13 Library Manager

137

Fig 13-3

Fig 13-4

� Maximum ROM size

The maximum size used by this object module program code. Dependent upon the code section

align type.

� Minimum ROM size

The minimum actual size used by this object module program code

� Maximum RAM size

The maximum size used by this object module program data. It depends on the data section

align type.

� Minimum RAM size

The minimum, actual size used by this object module program data.

� Public Name

The names of all public symbols in this object module.

138

HT-IDE3000 User�s Guide

C h a p t e r 1 4

LCD Simulator

Introduction

The Holtek LCD simulator, known as the HT-LCDS, provides a mechanism allowing users to simu-

late the output of LCD drivers. According to the user designed patterns and the control programs,

the HT-LCDS displays the patterns on the screen in real time. It facilitates the development pro-

cess even if the actual LCD hardware panel is unavailable. Note that if the current project�s

microcontroller does not support LCD functions, these commands are disabled.

LCD Panel Configuration File

Before starting the LCD simulation, an LCD panel configuration file must first be setup. The

HT-LCDS will obtain the LCD data and display LCD patterns on the screen according to the LCD

panel configuration file. The HT-LCDS cannot simulate the LCD action if this file is absent. For

microcontrollers possessing an LCD driver, the corresponding panel configuration file has to be

setup for LCD simulation. The LCD simulator command within the Tools menu will then be enabled

to setup the panel configuration file and for simulation (Fig14-1). The LCD panel configuration file

contains two kinds of data, panel configuration data and pattern information, which users can

setup using the HT-LCDS.

Chapter 14 LCD Simulator

139

14

Fig 14-1

Relationship Between the Panel File and the Current Project

By default, the panel configuration file has the same file name as the current project name except

for the extension name, which is .lcd. The HT-LCDS assumes this file to be the corresponding

panel configuration file of the current project. The panel configuration file is generated by the

HT-LCDS File menu, New command or the New button on the toolbar. A different file name from

the current project name can be assigned to the panel configuration file by clicking File menu,

Save command or Save button on the toolbar.

When the HT-LCDS begins simulation, it references the current active panel configuration file to

obtain its simulation information. The LCD panel configuration file is activated by selecting the

New or Open command of the HT-LCDS File menu. The file name of the LCD panel configuration

file may be the same as the current project name or a different name can be chosen.

Selecting the HT-LCDS

When selected from within the Tools menu, the LCD simulator as shown in Fig 14-2 is displayed if

the corresponding panel configuration file of the current project exists. The file name of each

bitmap pattern is shown at the specified COM/SEG position of the table. At the same time, these

patterns are shown on the above panel screen. If the corresponding panel configuration file does

not exist within the project directory, both the panel screen and the COM/SEG table will not be dis-

played. Fig 14-3 shows the HT-LCDS menu bar information.

The Fig below shows the HT-LCDS menu bar information.

140

HT-IDE3000 User�s Guide

Fig 14-2

� � � � � � � � ! " � � � �
� $ � � � � % �

& ' � �

(� � � � � " � � � � � % � � � � � �

Fig 14-3

New: create a new panel configuration file

Open: open an existing panel configuration file

Save: save the panel configuration file

Cut: delete a pattern

Copy: copy a pattern to the clipboard

Paste: add the copied pattern to the panel

I: panel information dialog

S: enter the LCD simulation mode

LCD Panel Picture File

The LCD panel picture (pattern) file is a bitmap file (.bmp) which represents the practical patterns

and their positions on the panel. The bitmap file can be created using any bitmap editor and pro-

vides another method of setting up the LCD panel pattern information by using the HT-LCDS Edit

menu, Panel Editor command. The bitmap file is optional, users can setup the LCD panel pattern

information even if the LCD panel picture file is absent.

Setup the LCD Panel Configuration File

The following two steps are used to setup a panel configuration file:

� Setup the panel configurations, including the segment and common number of the LCD driver

as well as the width and height size of the panel in pixels. Also, the directory of the panel configu-

ration file and the dot matrix mode can be selected.

� Select the patterns and their positions. This will setup the relationship between the patterns and

the COM/SEG positions.

Setup the Panel Configurations

To setup the panel configurations by selecting the HT-LCDS File menu, New command. The Panel

Configuration dialog box (Fig 14-4) will be displayed. Setup the correct LCD driver data,

COM/SEG number, Width, Height and Directory of the pattern, then press the [OK] button. After

setting up the panel configuration, the system returns to Fig 14-2 for pattern selection.

Chapter 14 LCD Simulator

141

Fig 14-4

The panel configurations include:

� COM and SEG. To set the LCD driver total COMMON number and SEGMENT number. The de-

fault number of the LCD driver for this microcontroller is displayed when Fig14-4 is displayed. To

ensure that these numbers are the same as the actual setting number of the LCD driver for the

micro controller.

� Width and Height. These are the size of the panel screen in pixels and can be changed to adjust

the panel screen.

� Panel configuration file directory. Select the directory where the panel configuration file is stored

using the browse button or setup to have the same directory as the project.

� Dot Matrix Mode. To simulate dot matrix type LCD panels. Fig 14-5 shows the dot matrix screen.

Note It is important not to set different COM or SEG number from the actual corresponding LCD driver

numbers, otherwise unpredictable results will occur.

Select the Patterns and Their Positions

The following methods show the steps of selecting the patterns and their positions

� To create a new panel configuration file using the HT-LCDS File menu New command. After

having set the panel configuration, Fig 14-2 is displayed. The user then has to select the pat-

terns from the Pattern Information dialog box (Fig 14-6) and set the COM/SEG positions. The

section, Add a new pattern, describes the procedure in detail.

� To open an existing panel configuration file using the HT-LCDS File menu Open command. The

patterns are displayed as shown on the panel screen in Fig 14-2 and the pattern file names are

displayed as shown in the Fig14-2 COM/SEG table position. Users can add/delete/change the

pattern information, including the pattern file and pattern positions.

� To open a panel picture file using the HT-LCDS Edit menu Panel Editor command. If this panel

picture file has been setup already, then it is not necessary to select the patterns, it is only nec-

essary to select the pattern positions. The section, Define the pattern using the Panel Editor, de-

scribes the procedure in detail.

Add a New Pattern

� Move the cursor to a COM/SEG position on the grid as shown in Fig 14-2 and double click the

mouse. The Pattern Information dialog box, as shown in Fig 14-6, is displayed. All the pattern

files (.bmp) in the project�s directory are listed in the Pattern List box. The Size field is the bitmap

size of the selected pattern, Com and Seg fields are the numbers of the selected COM/SEG po-

sition of this pattern. None of these three fields can be modified.

142

HT-IDE3000 User�s Guide

Fig 14-5

� Select a pattern, a bitmap file, from the Pattern List box, or click the Browse button to change to

another directory and select a pattern from that directory. The HT-LCDS uses 2-color bitmap

files as the image source of patterns. The Preview-window zooms into the selected pattern.

� Set the X/Y positions in the panel screen for the selected pattern.

� Press the [OK] button and return to Fig 14-2, then click the File menu, Save command or click

the Save button on the toolbar. The panel file has now been created or modified.

Delete a Pattern

� As shown in Fig 14-2, select the COM/SEG position of the pattern to be deleted and press the

[Delete] key or click the Cut button on the toolbar.

Change the Pattern

� Delete the selected pattern first, then add a new pattern to change the pattern.

� Alternatively, as shown in Fig 14-2, select the COM/SEG position of the selected pattern and

double click the mouse. The Pattern Information dialog box, as shown in Fig 14-6, is displayed.

Select a pattern from the Pattern List box and press the [OK] button.

Change the Pattern Position

� As shown in Fig 14-2, use the Select-Drag-Drop method to move the pattern directly onto the

panel screen.

� Alternatively, as shown in Fig 14-2, double click the COM/SEG position of the selected pattern.

The Pattern Information dialog box, in Fig 14-6, is displayed. Set the X, Y value of the new posi-

tion and press the [OK] button.

When the above operations have been completed and the system has returned to that shown in

Fig 14-2, click the HT-LCDS File menu, Save command or click the Save button on the toolbar.

The panel file has now been created or modified.

Chapter 14 LCD Simulator

143

Fig 14-6

How to Add a User-define Matrix

The HT-LCDS supports a mapping strategy (File menu, Import user matrix command) which can

help define a new matrix if the COM/SEG number is not equal to the ROW/COL number of the

LCD panel. For example,

Assume there is an LCD panel of 2 COMs and 6 SEGs, and assuming this LCD panel is a 3

ROWs�4 COLs matrix, as shown in the following mapping

COM0-SEG0 COM0-SEG1 COM0-SEG2 COM0-SEG3

COM1-SEG0 COM1-SEG1 COM1-SEG2 COM1-SEG3

COM0-SEG4 COM0-SEG5 COM1-SEG4 COM1-SEG5

A definition file for the above matrix can be defined as follows,

; MATRIX.DEF

; Comment line

ROW = 3

COLUMN = 4

; mapping syntax: ROW,COL => COM,SEG

0 , 0 => 0 , 0 ; Map Row0 Col0 to COM0 SEG0

0 , 1 => 0 , 1 ; Map Row0 Col1 to COM0 SEG1

0 , 2 => 0 , 2 ; Map Row0 Col2 to COM0 SEG2

0 , 3 => 0 , 3 ; Map Row0 Col3 to COM0 SEG3

1 , 0 => 1 , 0 ; Map Row1 Col0 to COM1 SEG0

1 , 1 => 1 , 1 ; Map Row1 Col1 to COM1 SEG1

1 , 2 => 1 , 2 ; Map Row1 Col2 to COM1 SEG2

1 , 3 => 1 , 3 ; Map Row1 Col3 to COM1 SEG3

2 , 0 => 0 , 4 ; Map Row2 Col0 to COM0 SEG4

2 , 1 => 0 , 5 ; Map Row2 Col1 to COM0 SEG5

2 , 2 => 1 , 4 ; Map Row2 Col2 to COM1 SEG4

2 , 3 => 1 , 5 ; Map Row2 Col3 to COM1 SEG5

Define the Pattern Using the Panel Editor

The HT-LCDS supports a full panel edit interface to define the LCD panel patterns. If a panel pic-

ture file has been drawn already, then it is not necessary to set all pattern files in the panel respec-

tively. The only requirement is to select the pattern positions.

144

HT-IDE3000 User�s Guide

Fig 14-7

The following steps select the pattern positions for all the patterns in the LCD panel

� Invoke the Panel Editor by selecting the Edit command, Panel Editor command after having set

the panel configuration

� Select the File menu, Open command in the Panel Editor to open the panel picture file (.bmp)

Note Supports 2-color .BMP only

� The panel will be displayed in the window as in Fig 14-7

� Select the pattern for each COM/SEG by using double-click or drag-and-drop methods. The

Save Pattern dialog box will be displayed after which the pattern information can be entered.

� Repeat the above step for all patterns in the panel.

� After having set the pattern information for all patterns, return to the Panel Editor window and

save all the settings using the File menu Save command.

� Exit the Panel Editor and return to the HT-LCDS, the panel will now display the new settings.

Add New Pattern Items Using a Batch File

The HT-LCDS provides a method to add pattern items from a batch file using the Edit menu and

Add Item Batch command. The batch file is a text file with an extension name .BTH. All the pattern

items in the batch file will define the pattern file name and its positions. After selecting a batch file

using the Edit menu�s Add Item Batch command, the HT-LCDS adds all patterns depicted in the

batch file at the specified positions of the panel. The following is an example of a .BTH file.

; this is a comment line.
; item syntax: BMPfile.bmp, COM, SEG, X, Y
CRYSTAL.BMP, 0, 2, 120, 30
FION.BMP, 2, 3, 200, 50
CLIN.BMP, 3, 2, 130, 90
STEVE.BMP, 4, 4, 20, 40

Selecting Color for an LCD Panel

The HT-LCDS provides a palette dialog, as shown in Fig.14-8, for selecting the colors of the panel

using the HT-LCDS Configure menu and Set Panel Color command.

Note The ECB mode is for HTG21x0 color LCD only.

Chapter 14 LCD Simulator

145

Fig 14-8

Setting Pattern Color for VFD Panel

The HT-LCDS provides an interface, as shown in Fig.14-9, for setting the color of each pattern for

Holtek�s VFD MCU (eg. HT49CVX series) Select Configure menu and execute the Set VFD pat-

tern Color command to accomplish this setting.

Simulating the LCD

Before starting the LCD simulation, ensure that the HT-LCDS refers to the correct panel configura-

tion file. Enter the HT-LCDS environment by selecting the Tools menu, LCD Simulator command

as shown in Fig 14-1 and Fig 14-2.

� Click once the S button on the toolbar allowing the HT-LCDS to begin LCD simulation while re-

ferring to the corresponding panel configuration file.

� Open a panel configuration file which is not the corresponding panel configuration file of the cur-

rent project and click the S button on the toolbar. The HT-LCDS will then begin LCD simulation

while referring to the opened panel configuration file.

When the HT-LCDS begins simulation, a window as shown in Fig 14-11 will be displayed while the

most recent LCD patterns will be displayed on the panel screen.

Stop the Simulation

Double click the title bar of the LCD simulation window to make the HT-LCDS return to the edit

mode.

146

HT-IDE3000 User�s Guide

Fig 14-11

Fig 14-9

Fig 14-10

C h a p t e r 1 5

Virtual Peripheral Manager

Introduction

In most practical applications the chosen MCU is connected to some forms of external hardware

to implement the necessary user functions, however the inclusion of this external hardware in the

simulation process is usually outside the scope of most MCU simulators. To overcome this prob-

lem, Holtek has developed a Virtual Peripheral Manager, or VPM, which enables the user to add a

range of external peripheral devices to the MCU project. Used in conjunction with the HT-IDE simu-

lator, the VPM enables the user to directly drive and monitor the inputs and outputs of these exter-

nal hardware devices allowing for more efficient debugging and implementation of user

applications.

The VPM Window

Fig 15-1 shows a practical example of a VPM window. As in most Windows applications the VPM

window incorporates a toolbar for the function menus and a status bar to indicate program informa-

tion with the main screen area displaying the peripherals or devices which have been added to the

project.

The peripherals added to the project are known as components in the VPM. Components can be

selected by clicking the mouse left button on the component required. Within this document the se-

lected component will be referred to as the current component. By double clicking on the current

component a connect dialog box will be displayed which permits the necessary connections to be

made between the component and the MCU. By clicking the right mouse key, on certain current

components a configuration” dialog box will be displayed allowing attributes to be setup for that

particular component.

In the status bar there are four fields, Mode, Current Component, Time and Cycle. The Mode field

indicates whether the VPM is currently in configuration mode or running mode. The Current

Component field shows the name of the current component. The Time field and Cycle field show

the total execution time and cycle count respectively while the VPM is in running mode.

Chapter 15 Virtual Peripheral Manager

147

15

VPM Menu

File Menu

There are six functions in the File menu as shown in Fig 15-2. Three of the main functions can also

be found on the toolbar as shown in Fig 15-3.

148

HT-IDE3000 User�s Guide

Fig 15-1

Fig 15-2

� New

Create a new VPM project. Each time the VPM is entered the system automatically creates a new

project.

� Open

Open an existing VPM project.

� Save

Save current project to file.

� Save As

Save current project with another file name to file.

� Recent File

List the most recently opened and closed four files.

� Exit

Exit VPM and return to Windows.

Function Menu

There are five functions in the Function menu as shown in Fig 15-4. All of these functions can also

be found on the toolbar as shown in Fig 15-5.

� Add

Add a new peripheral to the project.

Click the Add button on the toolbar. An Add Peripheral dialog will be displayed as shown in Fig

15-6. Select the peripheral desired and click the OK button.

Chapter 15 Virtual Peripheral Manager

149

Fig 15-3

Fig 15-5

Fig 15-4

� Del

Delete a peripheral from the project. Select the component to be deleted and click the Del button.

The selected component will be removed from the project.

� Connect

Select a component and click the Connect button on the toolbar. A Connect Dialog will be dis-

played like Fig. 15-7. The connection status of the current component will be displayed in Connect

status list box. The Connect/Disconnect button can be used again to adjust the connection status

between components.

As an example, Fig. 15-7 shows the Connect dialog box for an LED component named LED_0. In

this example, the current component is LED_0. The Select combo box will display all the compo-

nents in this project that can be connected to LED_0. The Select List Box will display all the ports

of the selected component. The Register Bit shows the port information details. The peripheral of

an LED has two pins, one anode and one cathode. In this example, LED_0�s CATHODE pin has

been connected to the CPU Port A bit0.

150

HT-IDE3000 User�s Guide

Fig 15-6

Fig 15-7

� CONFIG

Some peripherals include some user adjustable attribute options. To do this the component

should first be selected and then the Configure button pressed. If the component has attribute op-

tions, the Configuration Dialog box will be displayed. Fig. 15-8 shows an example of an LED con-

figuration dialog box.

� Mode

There has two modes, configuration mode and running mode. By clicking on the mode button, or

selecting mode item from the function menu, the system will toggle the VPM between these two

modes. In the configuration mode, the virtual external circuit can be edited using the

Add/Del/CONFIG functions. In the running mode, the VPM will display the operations of these

components according to their specific configurations in addition to displaying the Holtek IDE

MCU simulation results.

The VPM Peripherals

LED

The LED has two pins, one cathode and one anode. When the cathode =0 and the anode =1, the

LED will be illuminated. The LED has a colour option as shown in the configuration dialog box.

Chapter 15 Virtual Peripheral Manager

151

Fig 15-9

Fig 15-8

Button/Switch

The BUTTON/SWITCH has two options, the debounce time and the switch status when in the

open position. The debounce time units are in milliseconds. The BUTTON has a non-latching mo-

mentary operation while the SWITCH has a latching non-momentary operation. The DipSwitch pe-

ripheral offers a means of providing multiple switches in a single package, the size of which is

adjustable.

Seven Segment Display

A seven segment display is formed from eight individual leds known as A, B, C, D, E, F, G and ptr.

Each of these individual leds is connected to an input pin of the same name and also to a common

pin. This common pin can be either a cathode (-) or an anode (+) connection which determines the

polarity of the display.

152

HT-IDE3000 User�s Guide

Fig 15-11

Fig 15-12

Fig 15-10

� Resistor

The resistors exist to provide a pull-up or pull-down function and are connected to either VCC or

VSS respectively. The required configuration is set using their respective configuration dialog box.

� Logic Gate

Logic gates are provided to give a total of six logic functions.

Select a logic gate using the add function. If the logic gate that is displayed is not the required one,

pressing the right key on the mouse will display a range of logic gates as shown in the figure. The

desired logic gate can then be selected. The Pin Number input area determines the number of in-

put pins to each gate. The value set here is reflected in the number of pins available in the connect

dialog box.

� Matrix Key

The Matrix key provides a standard matrix key peripheral device, the size of which can be setup

from the configuration dialog box. The debounce time can be set for the matrix switches with the

units in milliseconds. Note that the columns of the matrix are either connected to VCC or VSS, an

option which is set in the attribute dialog box of the matrix peripheral.

Chapter 15 Virtual Peripheral Manager

153

Fig 15-14

Fig 15-13

Fig 15-15

If, for example, the user sets up the matrix key with row = 4 and column =4, there will be 4 input

pins or rows and 4 output pins or columns.

� Rectangle Wave Generator

The rectangle wave generator is used to generate rectangular waves, the frequency of which is

dependent upon the MCU frequency. In the attribute dialog box of this peripheral the cycle input

dictates how many instruction cycles are required for an input waveform transition. If for example

the cycle value is set to 2, then every 2 machine cycles the rectangular waveform generator input

will toggle. The period of this input is therefore twice the cycle value. Note that if the rectangular

wave generator is selected and the left key double clicked to display the connect dialog box, the

generator can only connect to one device. However if the devices to be connected to are selected

and their connect dialog box displayed then more than one device can be connected to the same

wave generator. If more than one pin on the MCU is to be connected to the same wave generator

then it is necessary to add further wave generators to achieve this.

Quick Start Example

From the examples provided in the Holtek IDE3000 User�s Guide, one has been chosen as a prac-

tical example to illustrate how to construct a virtual external circuit.

Scanning Light

� From within the HT-IDE3000 System

� Create a new project and select the HT48C10-1 MCU (Project/New)

� Add the source file scanning.asm to the project (Project/Edit) The file can be found in the Holtek

IDE\SAMPLE\CHAP15 directory

� Change the Holtek IDE to simulation mode.(Options/Debug/Mode)

� Build the project.(Project/Build)

� From within the VPM

� Create a new VPM project.

� Add 8 LEDs to the project by repeatedly clicking the Add button and selecting LED 8 times

� Add a resistor to the project - click the Add button and select RESISTOR just added and double

click the mouse left button - then setup the resistor�s name with VCC

� Connect all of the LED anode pins to VCC and connect all of the LED�s cathode pins to bit n of

PA on the MCU (n=0-7). The following shows how to connect LED_0�s anode to VCC and its

cathode to bit0 of PA on the MCU

� Click the mouse left button on LED_0 to select it

� Click the mouse right button on LED_0 to display the connect dialog box as shown as Fig

15-18

� Connect the cathode of LED_0 to PA bit0 on the MCU

� Repeat the above to setup all other LED_n connections

� Push the Mode button to change the VPM mode from configuration mode to running mode

154

HT-IDE3000 User�s Guide

Fig 15-16

� From within the HT-IDE3000

Start the debug operations � the output results for the LEDs will be shown in the VPM window.

Chapter 15 Virtual Peripheral Manager

155

Fig 15-18

Fig 15-17

156

HT-IDE3000 User�s Guide

P a r t I V

Appendix

Part IV Appendix

157

158

HT-IDE3000 User�s Guide

A p p e n d i x A

Reserved Words

Used By Cross Assembler

Reserved Assembly Language Words

The following table lists all reserved words used by the assembly language.

� Reserved Names (directives, operators)

$ DUP INCLUDE NOT

* DW LABEL OFFSET

+ ELSE .LIST OR

� END .LISTINCLUDE ORG

. ENDIF .LISTMACRO PAGE

/ ENDM LOCAL PARA

= ENDP LOW PROC

? EQU MACRO PUBLIC

[] ERRMESSAGE MESSAGE RAMBANK

AND EXTERN MID ROMBANK

BANK HIGH MOD .SECTION

BYTE IF NEAR SHL

DB IFDEF .NOLIST SHR

DBIT IFE .NOLISTINCLUDE WORD

DC IFNDEF .NOLISTMACRO XOR

Appendix A
Reserved Words Used By Cross Assembler

159

A

� Reserved Names (instruction mnemonics)

ADC HALT RLCA SUB

ADCM INC RR SUBM

ADD INCA RRA SWAP

ADDM JMP RRC SWAPA

AND MOV RRCA SZ

ANDM NOP SBC SZA

CALL OR SBCM TABRDC

CLR ORM SDZ TABRDL

CPL RET SDZA XOR

CPLA RETI SET XORM

DAA RL SIZ

DEC RLA SIZA

DECA RLC SNZ

� Reserved Names (registers names)

A WDT WDT1 WDT2

Instruction Sets

Arithmetic Instructions

ADD A,[m] Add Data Memory to ACC

ADDM A,[m] Add ACC to Data Memory

ADD A,x Add immediate data to ACC

ADC A,[m] Add Data Memory to ACC with carry

ADCM A,[m] Add ACC to Data Memory with carry

SUB A,x Subtract immediate data from ACC

SUB A,[m] Subtract Data Memory from ACC

SUBM A,[m] Subtract Data Memory from ACC with result in Data Memory

SBC A,[m] Subtract Data Memory from ACC with carry

SBCM A,[m] Subtract Data Memory from ACC with carry and result in Data Memory

DAA [m] Decimal adjust ACC for addition with result in Data Memory

160

HT-IDE3000 User�s Guide

Logic Operation Instructions

AND A,[m] AND Data Memory to ACC

OR A,[m] OR Data Memory to ACC

XOR A,[m] Exclusive-OR Data Memory to ACC

ANDM A,[m] AND ACC to Data Memory

ORM A,[m] OR ACC to Data Memory

XORM A,[m] Exclusive-OR ACC to Data Memory

AND A,x AND immediate data to ACC

OR A,x OR immediate data to ACC

XOR A,x Exclusive-OR immediate data to ACC

CPL [m] Complement Data Memory

CPLA [m] Complement Data Memory with result in ACC

Increment & Decrement Instructions

INCA [m] Increment Data Memory with result in ACC

INC [m] Increment Data Memory

DECA [m] Decrement Data Memory with result in ACC

DEC [m] Decrement Data Memory

Rotate Instructions

RRA [m] Rotate Data Memory right with result in ACC

RR [m] Rotate Data Memory right

RRCA [m] Rotate Data Memory right through carry with result in ACC

RRC [m] Rotate Data Memory right through carry

RLA [m] Rotate Data Memory left with result in ACC

RL [m] Rotate Data Memory left

RLCA [m] Rotate Data Memory left through carry with result in ACC

RLC [m] Rotate Data Memory left through carry

Appendix A
Reserved Words Used By Cross Assembler

161

Data Move Instructions

MOV A,[m] Move Data Memory to ACC

MOV [m],A Move ACC to Data Memory

MOV A,x Move immediate data to ACC

Bit Operation Instructions

CLR [m].i Clear bit of Data Memory

SET [m].i Set bit of Data Memory

Branch Instructions

JMP addr Jump unconditionally

SZ [m] Skip if Data Memory is zero

SZA [m] Skip if Data Memory is zero with data movement to ACC

SZ [m].i Skip if bit i of Data Memory is zero

SNZ [m].i Skip if bit i of Data Memory is not zero

SIZ [m] Skip if increment Data Memory is zero

SDZ [m] Skip if decrement Data Memory is zero

SIZA [m] Skip if increment Data Memory is zero with result in ACC

SDZA [m] Skip if decrement Data Memory is zero with result in ACC

CALL addr Subroutine call

RET Return from subroutine

RET A,x Return from subroutine and load immediate data to ACC

RETI Return from interrupt

Table Read Instructions

TABRDC [m] Read ROM code (current page) to Data Memory and TBLH

TABRDL [m] Read ROM code (last page) to Data Memory and TBLH

162

HT-IDE3000 User�s Guide

Miscellaneous Instructions

NOP No operation

CLR [m] Clear Data Memory

SET [m] Set Data Memory

CLR WDT Clear Watchdog Timer

CLR WDT1 Pre-clear Watchdog Timer

CLR WDT2 Pre-clear Watchdog Timer

SWAP [m] Swap nibbles of Data Memory

SWAPA [m] Swap nibbles of Data Memory with result in ACC

HALT Enter Power Down Mode

Appendix A
Reserved Words Used By Cross Assembler

163

164

HT-IDE3000 User�s Guide

A p p e n d i x B

Cross Assembler Error Messages

A0005 Undefined symbol

The specified symbol is not defined in this file.

A0010 Unexpected symbol

The symbol is redundant.

A0011 Symbol already defined elsewhere

Re-defined symbol. Cross Assembler does not accept multiple symbol definitions.

A0012 Undefined symbol in EQU directive

Cross Assembler does not accept undefined symbols to the right of directive EQU,

even for forward references.

A0013 Expression syntax error

Syntax error in expression.

A0014 Cross Assembler internal stack overflow

This error is due to Cross Assembler processes the expression analysis.

A0016 Duplicated MACRO argument

Two formal arguments in the MACRO definition line with the same name.

A0017 Syntax error in MACRO parameters

Syntax error in MACRO formal parameters (expression).

A0018 Wrong number of parameters

The total number of MACRO formal parameters is not equal to the total number of

MACRO actual parameters (reference number is not equal to definition number).

A0019 Redefined EQU

The symbol to the left of the directive EQU has been previously defined.

A0020 Multiple section defined

The name of the section is the same as previously defined section.

The section name must be unique in a source file.

A0021 DBIT could be used in data section only

This directive can not be used in the code section.

Appendix B Cross Assembler Error Messages

165

B

A0022 DB could be used in data section only

This directive can not be used in the code section.

A0024 Syntax error

Syntax error in statement.

A0025 MACRO too deep

Too many MACRO reference nesting levels. The maximum number of nesting

levels is 7 (refer to other MACROs recursively).

A0026 INCLUDE too deep

Too many INCLUDE file nesting levels. The maximum number of INCLUDE nesting

levels is 7 (include other files recursively).

A0027 IF too deep

Too many IF/ENDIF pair nesting levels. The maximum nesting level is 7.

A0028 ELSE without IF

No directive IF before the directive ELSE (IF/ELSE/ENDIF pair is unbalanced).

A0029 ELSE after ELSE

No directive ENDIF or IF after the directive ELSE.

(IF/ELSE/ENDIF pair is unbalanced).

A0030 ENDIF without IF

No directive IF before the directive ENDIF (IF/ELSE/ENDIF pair is unbalanced).

A0031 Open conditional

The conditional directives pair (IF/IFE/ENDIF) is unbalanced.

A0032 (expected

Left parenthesis is missing, should be added to the expression.

A0033 ORG overlay

The memory address of directive ORG is overlaid with previously defined code.

A0034 Value out of range

The specified value exceeds the allowed range.

A0035 RAM-space limit exceeded

The total memory size of data sections exceeds the allowed RAM size.

A0036 ROM-space limit exceeded

The total memory size of code sections exceeds the allowed ROM size.

A0037 DC could be used in code section only

This directive can not be used in the data section.

A0038 End of file encountered in MACRO definition

The directive ENDM is missing in the MACRO definition block (unbalanced).

A0039 Constant expected

A constant is required in the expression.

166

HT-IDE3000 User�s Guide

A0040 Open procedure

A directive ENDP is required to match the previous PROC.

A0041 Block nesting error

The block nesting of directive PROC/ENDP is illegal.

A0042 � expected

The single quote � is missing.

A0043 Non-digit in number

The number token contains a non-digit character.

A0044 EXTERN needs an identifier

There is no identifier specified in the EXTERN directive.

A0045 Data type expected

The data type of the identifier should be declared.

A0046 Unknown data type

The data type is unknown.

A0047 �:� expected

The �:� is missing.

A0048 Too many local labels

Too many local labels defined. At most 30 local labels are permitted between two

labels.

A0049 Redefined Section in ROMBANK is inconsistent

A section has already been declared in another ROMBANK directive.

A0050 Bank out of range

The bank number specified in the ROMBANK directive exceeds the maximum bank

number.

A0051 Section Undefined in ROMBANK directive

The directive ROMBANK contains an undefined section name.

A0052 Too many errors

There are too many errors encountered while assembling the source file.

A0053 LABEL could be used in data section only

This directive can not be used in the code section.

A0054 ROMBANK/RAMBANK shall be defined before SECTION is declared

A section with a specified ROM/RAM bank should be declared with

ROMBANK/RAMBANK directive first.

A0055 Record length overflow

The record length of the output object file is overflow.

A4001 Incorrect command line option

The command line option is illegal.

Appendix B Cross Assembler Error Messages

167

A4002 Redefined symbol

The specified symbol is defined already.

A4003 No source file name

No source file name in the command line.

A4004 Incorrect command line syntax

The command line syntax is illegal.

A4005 Could not find file

The specified file is not found.

A4007 Bad instruction format file

The instruction description file is incorrect.

A4008 Cross Assembler internal fatal error

Cross Assembler failure, please contact dealer.

A4009 Out of memory

No enough memory for Cross Assembler to process the source file.

168

HT-IDE3000 User�s Guide

A p p e n d i x C

Cross Linker Error Messages

L1001 No object files specified

No object file is specified in the command line or the batch file.

Check the command line syntax.

L1002 Object file filename.obj is not found in pass1

The specified object file filename.obj is not found in Cross Linker pass1.

Check if the file (filename.obj) is in the working directory, otherwise contact dealer.

L1003 Out of memory

No enough memory space for Cross Linker.

Check the total system free memory.

L1004 Illegal section address �dddd�

The section address specified in the command line option/ADDR is illegal.

The address dddd should be in hex.

L1005 Illegal command option �option�

The specified option (option) in the command line is illegal.

L1006 Batch file �lbatch.bat� is not found

The specified batch file lbatch.bat is not found.

Check if the batch file (lbatch.bat) is in the working directory.

L1007 Illegal file name �filename.obj�

The specified file filename.obj contains illegal characters.

Correct the characters of the file filename.obj.

L1008 Command line syntax error

The syntax of the command line is incorrect.

L1009 Illegal object file �filename.obj�, RecType=xx

The format of the specified object file (filename.obj) is incorrect.

Check if this object file has been generated by Holtek�s Cross Assembler.

Appendix C Cross Linker Error Messages

169

C

L1010 Cannot close object file �filename.obj�

Cross Linker has failed to close the specified object file (system error).

Contact dealer.

L1011 Record �xx�H check sum error

Cross Linker found a check sum error in the record (xxH) of the specified

object file.

Check if this object file is generated by Cross Assembler or not.

L1012 MCU information mismatch

file �filename1.obj� and �filename2.obj�

Two object files with different MCU configurations during assembly.

Ensure the same MCU configuration during assembling.

L1013 Library file �libname.lib� does not exist

The specified library file libname.lib does not exist or the library file has not been

generated by Holtek�s Library Manager.

Check if the library file (libname.lib) is in the working directory.

L1014 Cannot close the library file �filename.lib�

Cross Linker has failed to close the specified file.

Contact dealer.

L1015 Library file �libname.lib� is not found

Cross Linker cannot re-open the specified library file libname.lib while processing

the link work.

Contact dealer.

L1016 Object file �filename.obj� is not found in pass2

The specified object file filename.obj is not found in the Cross Linker pass2.

Contact dealer.

L1017 Cannot write the checksum of record �xx� H

Cross Linker fails to write check sum of record (xxH) to the output file.

Contact dealer.

L1018 Cannot write data of record �xx� H

Cross Linker fails to write record (xxH) data to the output file.

Check the PC file system and working directory or contact dealer.

L1019 Cannot open the debug file �debugname.dbg�

Cross Linker failed to open the debug file debugname.dbg.

Check the PC file system and working directory or contact dealer.

L1020 Cannot open the task file �taskname.tsk�

Cross Linker failed to open the task file taskname.tsk.

Check the PC file system and working directory or contact dealer.

L1021 Cannot open the map file �mapname.map�

Cross Linker failed to open the map file mapname.map.

Check the PC file system and working directory or contact dealer.

170

HT-IDE3000 User�s Guide

L1022 Cannot create the debug file �debugname.dbg�

Cross Linker failed to create the debug file debugname.dbg.

Check the PC file system and working directory or contact dealer.

L1023 Cannot create the task file �taskname.tsk�

Cross Linker fails to create the task file taskname.tsk..

Check the PC file system and working directory or contact dealer.

L1024 Cannot create the map file �mapname.map�

Cross Linker fails to create the map file mapname.map.

Check the PC file system and working directory or contact dealer.

L1025 Program code is too large

The total size of program code is larger than the MCU ROM size.

Check and Modify the program code (in CODE sections).

L1026 Program data is too large

The total size of the program data sections is larger than the MCU RAM size.

Check and Modify the DATA sections, omit some data in the RAM.

L1027 Syntax error in batch file �batch.bat�

The command syntax in the batch file is incorrect.

L1028 Cannot close the batch file �batch.bat�

Cross Linker failed to close the specified batch file.

Contact dealer.

L1029 Cannot open the binary file

L1030 Cannot create the binary file

L1031 Public symbols are duplicated

Public symbol �sym1� in module �mod-name1�

Public symbol �sym1� in module �mod-name2�

Cross Linker found a symbol named �sym1� that is declared as a public symbol in

both modules, �mod-name1� and �mod-name2�.

Change one public symbol and all external references to this symbol to another

name.

L1032 Internal error for File Record

Cross Linker fails to convert the local file index to the global file index.

Contact dealer.

L1033 Internal error when obtaining the global index

Cross Linker failed to get the global file index.

Contact dealer.

L1034 Illegal class type for section �sec-name� in the file �filename.obj�

Cross Linker found that the class name of section (sec-name) in the file

(filename.obj) is illegal (neither CODE nor DATA).

Check if the file (filename.obj) is generated by Holtek Cross Assembler. Otherwise,

contact dealer.

Appendix C Cross Linker Error Messages

171

L1035 Internal error when section �sec-name� of the file �filename.obj� is located

Cross Linker failed to find the section (sec-name) while in section allocation.

Contact dealer.

L1036 The absolute address for the section is illegal

L1037 Two sections are overlapping

Section �sec-name1� in the file �filename1.obj�

Section �sec-name2� in the file �filename2.obj�

The ROM or RAM space allocated for the section �sec-name1� in the file

�filename1.obj� overlaps with the ROM or RAM space of the section �sec-name2�

in the file �filename2.obj�.

Check the address and length of these two sections.

Refer to the listing file *.lst generated by Cross Assembler.

L1038 ROM/RAM (Bank xx) memory allocation failed for section �sec-name�

(size xxH) in the file �filename.obj�

Cross Linker fails to find enough ROM or RAM space for the section (sec-name) of

the file (filename.obj) while in public section allocation.

Check the length of all sections in the input object files. Also, check or modify the

align type of some sections to compact the sections space. Otherwise contact

dealer.

L1039 Internal error, failed to get SECDEF

Cross Linker internal error.

Contact dealer.

L1040 Illegal ROM bank number

L1041 A section in ROM bank is not defined

L1042 Failed to move the write pointer for task file

Cross Linker internal error.

Contact dealer.

L1043 Illegal Fixupp record in the file �binary.obj�

Cross Linker internal error.

Contact dealer.

L1044 Illegal LIBHED record in the file

L1045 Illegal LIBNAM record in the file

L1046 Illegal LIBDIC record in the file

L1047 Caller is not a local section

L1048 Procedure (�proc-name�) is redefined

L1049 Illegal extern index

L1050 Local section name not in LNAMES

L1051 No corresponding section for extern index

172

HT-IDE3000 User�s Guide

L1052 Fail to get the global block ID

L1053 MCU RAM information mismatch

L1054 Illegal RAM bank number

L1055 A section in RAM bank is not defined

L1056 Both banks �bank-no1� and �bank-no2� contains the section �sec-name�

L1057 Total length of combined sections exceeds the bank size

L1058 The specified section address conflicts with the absolute section

L1059 The bank number of specified section address conflicts with the section

L1060 Error Fixmth data is referred by bank Fixupp

L2001 Unresolved external symbol �ext-symbol� in file �filename.obj�

No public symbol named �ext-symbol� in the file filename.obj has been found in

either the input object files or the specified library files.

Link the object file that defines a public symbol named ext-symbol into the

command line, or include a library file defining a public symbol named ext-symbol.

L2002 Symbol type mismatch

Public symbol �symbol1� in module �mod-name1�

External symbol �symbol1� in module �mod-name2�

Cross Linker found that an external symbol and a public symbol have the same

name, but have a different symbol type.

Check the symbol type of this external symbol, modify the source file, re-assemble

the file and re-link.

L3001 Specified section �sec-name� does not exist

The specified section (sec-name) in the command line option/ADDR does not exist

Input the correct section name in the command line or ignore this section. This is a

warning message, Cross Linker does the allocation work as if this option has not

been issued.

L3002 Specified address �xxxx� for the code section �sec-name� is illegal

The specified address of the specified section (sec-name) in the command line

option /ADDR is illegal (not a hexadecimal digit or exceeds the legal range).

Input the correct address in the command line or ignore this section.

This is a warning message, Cross Linker does the allocation work as if this option

has not been issued.

L3003 Specified address �xxxx� for the data section �sec-name� is illegal

L3004 Recursive situation occurred in procedure �proc-name�

Appendix C Cross Linker Error Messages

173

174

HT-IDE3000 User�s Guide

A p p e n d i x D

Cross Library Error Messages

U0001 No library file name

U0002 Library file does not exist

U0003 Library file exists already

U0004 The contents of the library file will be discarded if operation is executed

U0005 Can�t open the library file

U0006 Can�t create a library file

U0007 Can�t create a TMP library file

U0008 Incorrect library file

U0009 Can�t open the list file

U0010 Can�t insert a new module to library

U0011 Can�t open the object file

U0012 Delete operation fails

U0013 Replace operation fails

U0014 A module with the same name exists in library already

In any library file, there cannot exist two modules with the same name.

Library Manager will check this situation when processing ADD operation.

U0015 The module doesn�t exist in library

The specified module is not in the specified library file. Library Manager will check

when processing DELETE, REPLACE, EXTRACT operations.

U0016 No enough memory

The user system has no enough memory for Library Manager.

Appendix D Cross Library Error Messages

175

D

U0017 Bad object file

The file to be added to the library file has a bad object format.

It may not be generated by Cross Assembler or a disk error.

U0018 No public name in the specified module

If a symbol needs to be public, refer to chapter 9, program directive for PUBLIC

directive, and re-assemble the source file, then use Library Manager to replace

the new object file with the old module.

U0019 Illegal operation

U0020 Fail to close a file

U0021 Check sum is incorrect

Library Manager internal error.

U0022 Fail to out record to the library file

Library Manager internal error.

U0023 Out checksum error

Library Manager internal error.

U0024 Fail to seek file

Library Manager internal error.

176

HT-IDE3000 User�s Guide

A p p e n d i x E

Holtek Cross C Compiler

Error Messages

Error Code

C1000 Unterminated conditional in #include

C1001 Unterminated #if/#ifdef/#ifndef

C1002 Unidentifiable control line

C1003 Could not find include file filename

C1004 Illegal operator * or & in #if/#elsif

C1005 Bad operator (operator) in #if/#elsif

C1007 #elif with no #if

C1008 #elif after #else

C1009 #else with no #if

C1010 #else after #else

C1011 #endif with no #if

C1012 #defined token is not a name

C1013 #defined token token cannot be redefined

C1014 Incorrect syntax for �defined�

C1015 Bad syntax for control line

C1016 Preprocessor control control not yet implemented

C1017 Duplicate macro argument

C1018 Syntax error in macro parameters

C1019 Macro redefinition of macro-name

C1020 Disagreement in number of macro arguments

C1021 EOF in macro argument list

C1022 # not followed by macro parameter

C1024 Macro argument is too long

C1025 Unknown internal macro

C1026 Unterminated string or char const

C1027 Undefined expression value

C1028 Bad ?: in #if/#endif

C1030 Bad number number in #if/#elsif

C1031 Empty character constant

C1034 String in #if/#elsif

C1035 Syntax error in #undef

C1036 Syntax error in #else

Appendix E Holtek Cross C Compiler Error Messages

177

E

C1037 Syntax error in #line

C1038 Syntax error in #ifdef/#ifndef

C1040 Syntax error in #if/#elsif

C1042 Syntax error in #include

C1043 Syntax error in #if/#endif

C1044 Syntax error in #endif

C1045 Lexical error in preprocessor

C1046 Internal error in #if/#elsif

C1047 EOF inside comment

C1048 #error directive: �err-string�

C1049 #line specifies number out of range

C2001 unrecognized declaration

C2002 invalid use of auto/register

C2004 invalid use of specifier

C2005 invalid type specification

C2006 invalid use of typedef

C2007 missing identifier

C2008 redeclaration of identifier

C2009 empty declaration

C2010 invalid storage class

C2011 redeclaration of identifier previously declared at file_line_no

C2012 redefinition of identifier previously defined at file_line_no

C2013 illegal initialization for identifier

C2014 undefined size for type identifier

C2015 extraneous identifier identifier

C2016 size is an illegal array size

C2017 illegal formal parameter types

C2018 missing parameter type

C2019 expecting an identifier

C2020 extraneous old-style parameter list

C2021 illegal initialization for parameter identifier

C2022 invalid operator field declarations

C2023 missing operator tag

C2024 type is an illegal bit-field type

C2025 size is an illegal bit-field size

C2026 field name missing

C2027 type is an illegal field type

C2028 undefined size for field type identifier

C2029 size of type exceeds number bytes

C2030 illegal use of incomplete type type

C2031 conflicting argument declarations for function identifier

C2032 missing name for parameter number in function identifier

C2033 undefined size for parameter type identifier

C2034 declared parameter identifier is missing

C2035 undefined static type identifier

C2036 undefined label identifier

C2037 expecting an enumerator identifier

C2038 underflow/overflow in value for enumeration constant identifier

C2039 unknown enumeration identifier

C2040 type error in argument number to identifier; found type1 expected type2

C2041 too many arguments in identifier

C2042 insufficient number of arguments in identifier

178

HT-IDE3000 User�s Guide

C2043 unknown size for type type

C2044 assignment to const identifier identifier

C2045 assignment to const location

C2046 addressable object required

C2047 operands of identifier have illegal types type1 and type2

C2048 operand of unary operator has illegal type type

C2049 syntax error; found token1 expecting token2

C2050 too many errors

C2051 skipping token

C2053 invalid operand of unary &; identifier is declared register

C2054 invalid type argument type to sizeof

C2055 sizeof applied to a bit field

C2056 cast from type1 to type2 is illegal

C2057 found type expected a function

C2059 field name expected

C2060 left operand of -> has incompatible type type

C2061 illegal use of type name type

C2062 illegal use of argument

C2063 illegal expression

C2064 lvalue required

C2065 unknown field identifier of type

C2067 initializer must be constant

C2068 cast from type1 to type2 is illegal in constant expressions

C2069 invalid initialization type; found type1 expected type2

C2070 cannot initialize undefined type

C2071 missing { in initialization of type

C2072 number of initializers not matched

C2073 illegal character@

C2074 invalid hexadecimal constant identifier

C2075 invalid binary constant identifier

C2076 invalid octal constant identifier

C2077 missing character

C2078 identifier literal too long

C2079 missing �

C2080 illegal character character

C2081 identifier1 is a preprocessing number but an invalid identifier2 constant

C2082 invalid floating constant identifier

C2083 ill-formed hexadecimal escape sequence

C2084 integer expression must be constant

C2085 illegal break statement

C2086 illegal continue statement

C2087 illegal case label

C2088 case label must be a constant integer expression

C2089 illegal default label

C2090 extra default label

C2091 extraneous return value

C2092 missing label in goto

C2093 unrecognized statement

C2094 illegal statement termination

C2095 redefinition of label identifier previously defined at life_line_no

C2096 illegal type type in switch expression

C2097 duplicate case label value

Appendix E Holtek Cross C Compiler Error Messages

179

C2098 illegal return type; found type1 expected type2

C2099 type error: pointer expected

C2100 illegal type �array of type�

C2101 missing array size

C2102 type error: array expected

C2103 illegal type type

C2104 type error: function expected

C2105 duplicate field name identifier in type

C2106 illegal initialization of extern identifier

C2107 #endasm expected

C2109 variable with initialized value must be declared as constant.

C2110 ROM constant variable must be initialized

C2111 constant variable must be declared as global

C2112 overflow in octal escape sequence

C2113 bit variable cannot be declared as constant

C2114 unclosed comment

C2115 illegal operation for bit variable

C2116 bit pointer not allowed

C2117 invalid pragma string

C2118 bit member in structure not allowed

C2119 ROM constant variable must not be declared as extern

C2120 vector function must not have parameters

C2121 vector function must be void type

C2122 const string must be used in the C file having main function

C2123 array should specify the size

C2124 size of �array of type� exceeds n bytes

C2125 should specify ROM address

C2126 RAM address �@� cannot be used with constant variables

C2127 variable with specific RAM address �@� should be declared as global

C2128 left operand of . has incompatible type

C2129 undeclared identifier

C2130 array size exceeds 255

C2131 more than 255 bytes in type

C2132 invalid initial value

C2133 bit array not allowed

C2134 redefinition of vector

C2135 invalid vector

C2136 vector is used

C2137 syntax error ; redundant tokens after #asm/#endasm

C2138 in-line asm should be put within a function

C2200 internal error

C2201 insufficient memory

C2202 read error

Warning Code

C4001 empty declaration

C4002 empty input file

C4003 missing prototype

C4004 inconsistent linkage for identifier previously declared at file_line_no

C4006 declaration of identifier does not match previous declaration at file_line_no

180

HT-IDE3000 User�s Guide

C4008 register declaration ignored for type identifier

C4009 extraneous 0-width bit field type identifier ignored

C4010 more than 127 fields in type

C4011 more than 31 parameters in function identifier

C4012 old-style function definition for identifier

C4013 compatibility of type1 and type2 is compiler dependent

C4014 identifier is a non-ANSI definition

C4015 missing return value

C4016 static type identifier is not referenced

C4017 parameter type identifier is not referenced

C4018 local type identifier is not referenced

C4019 register declaration ignored for type identifier

C4020 more than 127 enumeration constants in type

C4021 non-ANSI trailing comma in enumerator list

C4022 more than 31 arguments in a call to identifier

C4023 assignment between type1 and type2 is compiler-dependent

C4024 identifier used in a conditional expression

C4026 conversion from type1 to type2 is compiler dependent

C4027 type used as an lvalue

C4028 conversion from type1 to type2 is undefined

C4029 more than 511 external identifiers

C4030 initializer exceeds bit-field width

C4031 missing � in preprocessor line

C4033 unrecognized control line

C4034 more than 509 characters in a string literal

C4035 string/character literal contains non-portable characters

C4036 excess characters in multibyte character literal token ignored

C4037 overflow in constant token

C4039 overflow in hexadecimal escape sequence

C4041 unrecognized character escape sequence character

C4042 overflow in constant expression

C4043 result of unsigned comparison is constant

C4044 shifting a type by number bits is undefined

C4045 unreachable code

C4046 more than 15 levels of nested statements

C4047 switch statement with no cases

C4048 more than 257 cases in a switch

C4049 switch generates a huge table

C4050 pointer to a parameter/local identifier is an illegal return value

C4051 source code specifies an infinite loop

C4052 more than 127 identifiers declared in a block

C4053 reference to type elided

C4054 reference to volatile type elided

C4055 declaring type array of type is undefined

C4056 qualified function type ignored

C4057 unnamed operator in prototype

Appendix E Holtek Cross C Compiler Error Messages

181

Fatal Code

C6001 function not supported yet

182

HT-IDE3000 User�s Guide

	Contents
	Part I
Integrated Development
Environment
	Chapter 1
Overview and Installation
	HT-IDE Development Environment
	Holtek In-Circuit Emulator � HT-ICE
	System Configuration
	Installation

	Chapter 2
Quick Start
	Chapter 3
Menu -
File/Edit/View/Tools/Options
	Start the HT-IDE3000 System
	File Menu
	Edit Menu
	View Menu
	Tools Menu
	Options Menu

	Chapter 4
Menu - Project
	Create a New Project
	Open and Close a Project
	Manage the Source Files of a Project
	Build a Project�s Task Files
	Assemble/Compile
	Print Option Table Command
	Generate Demo File (.DMO) Command

	Chapter 5
Menu - Debug
	Reset the HT-IDE3000 System
	Emulation of Application Programs
	Single Step
	Breakpoints
	Trace the Application Program
	Debugger Command Mode

	Chapter 6
Menu - Window
	Window Menu Commands

	Chapter 7
Simulation
	Start the Simulation

	Chapter 8
OTP Programming
	Introduction
	Installation
	Adapter Card
	Programming an OTP Device with the HT-HandyWriter
	System Messages

	Part II
Development Language and Tools
	Chapter 9
Assembly Language and
Cross Assembler
	Notational Conventions
	Statement Syntax
	Assembly Directives
	Assembly Instructions
	Miscellaneous
	Cross Assembler Options
	Assembly Listing File Format

	Chapter 10
Holtek C Language
	Introduction
	C Program Structure
	Identifiers
	Data Types
	Constants
	Operators
	Program Control Flow
	Functions
	Pointers and Arrays
	Structures and Unions
	Preprocessor Directives
	Holtek C Language Extensions and Restrictions

	Chapter 11
Mixed Language
	Little Endian
	Naming rule of Functions and Parameters
	Parameter Passing
	Return Value
	Preserving Registers
	Calling assembly function from C program
	Calling a C Function from an Assembly Program
	Programming the ISR with Assembly Language

	Chapter 12
Cross Linker
	What the Cross Linker Does
	Cross Linker Options
	Map File
	Cross Linker Task File and Debug File

	Part III
Utilities
	Chapter 13
Library Manager
	What the Library Manager Does
	To Setup the Library Files

	Chapter 14
LCD Simulator
	Introduction
	LCD Panel Configuration File
	LCD Panel Picture File
	Setup the LCD Panel Configuration File
	Simulating the LCD

	Chapter 15
Virtual Peripheral Manager
	Introduction
	The VPM Window
	VPM Menu
	The VPM Peripherals
	Quick Start Example

	Part IV
Appendix
	Appendix A
Reserved Words
Used By Cross Assembler
	Reserved Assembly Language Words
	Instruction Sets

	Appendix B
Cross Assembler Error Messages
	Appendix C
Cross Linker Error Messages
	Appendix D
Cross Library Error Messages
	Appendix E
Holtek Cross C Compiler
Error Messages
	Error Code
	Warning Code
	Fatal Code

